論文の概要: ST-Gait++: Leveraging spatio-temporal convolutions for gait-based emotion recognition on videos
- arxiv url: http://arxiv.org/abs/2405.13903v1
- Date: Wed, 22 May 2024 18:24:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 20:43:22.431690
- Title: ST-Gait++: Leveraging spatio-temporal convolutions for gait-based emotion recognition on videos
- Title(参考訳): ST-Gait++:ビデオにおける歩行に基づく感情認識のための時空間畳み込みの活用
- Authors: Maria Luísa Lima, Willams de Lima Costa, Estefania Talavera Martinez, Veronica Teichrieb,
- Abstract要約: 歩行の分析を通して感情認識のための枠組みを提案する。
我々のモデルは空間的時間的グラフ畳み込みネットワークからなる。
提案手法をE-Gaitデータセット上で評価し,2177個のサンプルから構成した。
- 参考スコア(独自算出の注目度): 3.1489012476109854
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Emotion recognition is relevant for human behaviour understanding, where facial expression and speech recognition have been widely explored by the computer vision community. Literature in the field of behavioural psychology indicates that gait, described as the way a person walks, is an additional indicator of emotions. In this work, we propose a deep framework for emotion recognition through the analysis of gait. More specifically, our model is composed of a sequence of spatial-temporal Graph Convolutional Networks that produce a robust skeleton-based representation for the task of emotion classification. We evaluate our proposed framework on the E-Gait dataset, composed of a total of 2177 samples. The results obtained represent an improvement of approximately 5% in accuracy compared to the state of the art. In addition, during training we observed a faster convergence of our model compared to the state-of-the-art methodologies.
- Abstract(参考訳): 感情認識は人間の行動理解に関係しており、顔の表情や音声認識はコンピュータビジョンコミュニティによって広く研究されている。
行動心理学の分野における文学は、歩行が人が歩く方法として説明され、感情の付加的な指標であることを示している。
本研究では、歩行の分析を通して感情認識のための深い枠組みを提案する。
より具体的には、我々のモデルは、感情分類のタスクのための頑健な骨格に基づく表現を生成する空間的時間的グラフ畳み込みネットワークからなる。
提案手法をE-Gaitデータセット上で評価し,2177個のサンプルから構成した。
その結果,最先端技術と比較して約5%の精度向上が得られた。
さらに、トレーニング中は、最先端の方法論と比較してモデルがより高速に収束することが観察された。
関連論文リスト
- How Do You Perceive My Face? Recognizing Facial Expressions in Multi-Modal Context by Modeling Mental Representations [5.895694050664867]
本稿では,単純な分類タスクを超越した新しい表情分類手法を提案する。
本モデルでは,認識された顔を正確に分類し,文脈で顔を観察する際,人間によって知覚される対応する心的表現を合成する。
本研究では,人間の心的表現の近似を効果的に生成することを示す。
論文 参考訳(メタデータ) (2024-09-04T09:32:40Z) - An Explainable Fast Deep Neural Network for Emotion Recognition [1.3108652488669732]
本研究では、映像解析による感情分類の枠組みにおける二元的ディープニューラルアーキテクチャの説明可能性手法について検討する。
我々は、感情的な感覚の中で重要な顔のランドマークの動きを理解するために、革新的な説明可能な人工知能アルゴリズムを採用している。
論文 参考訳(メタデータ) (2024-07-20T12:59:08Z) - Iconic Gesture Semantics [87.00251241246136]
ジェスチャーの視覚的象徴的モデルの知覚的分類において、情報評価は拡張的な例示(例示)として表される。
視覚コミュニケーションのインスタンスの知覚的分類は、Frege/Montagueフレームワークとは異なる意味の概念を必要とする。
モデル理論評価から動的セマンティックフレームワークにおける推論的解釈まで,ジェスチャ表現の全範囲をカバーするアイコン的ジェスチャセマンティクスが導入された。
論文 参考訳(メタデータ) (2024-04-29T13:58:03Z) - Emotion Recognition from the perspective of Activity Recognition [0.0]
人間の感情状態、行動、反応を現実世界の環境に適応させることは、潜伏した連続した次元を用いて達成できる。
感情認識システムが現実のモバイルおよびコンピューティングデバイスにデプロイされ統合されるためには、世界中の収集されたデータを考慮する必要がある。
本稿では,注目機構を備えた新しい3ストリームエンドツーエンドのディープラーニング回帰パイプラインを提案する。
論文 参考訳(メタデータ) (2024-03-24T18:53:57Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - Affect-DML: Context-Aware One-Shot Recognition of Human Affect using
Deep Metric Learning [29.262204241732565]
既存の方法は、すべての関心の感情に注釈付きトレーニングの例として優先順位が与えられると仮定している。
我々は、文脈における感情のワンショット認識を概念化し、単一のサポートサンプルからより細かい粒子レベルの人間の影響状態を認識することを目的とした新しい問題である。
モデルの全変種は、ランダムなベースラインよりも明らかに優れており、セマンティックシーンのコンテキストを活用することで、学習された表現を一貫して改善している。
論文 参考訳(メタデータ) (2021-11-30T10:35:20Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - Leveraging Recent Advances in Deep Learning for Audio-Visual Emotion
Recognition [2.1485350418225244]
人間の行動分析のために, 自発的なマルチモーダル感情認識が広く研究されている。
視聴覚感情認識のための深層学習に基づく新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-03-16T15:49:15Z) - Emotion pattern detection on facial videos using functional statistics [62.997667081978825]
顔面筋運動の有意なパターンを抽出する機能的ANOVAに基づく手法を提案する。
感情群間の表現に時間的差があるかどうかを関数fテストを用いて判定する。
論文 参考訳(メタデータ) (2021-03-01T08:31:08Z) - Facial Expression Editing with Continuous Emotion Labels [76.36392210528105]
深層生成モデルは、自動表情編集の分野で素晴らしい成果を上げている。
連続した2次元の感情ラベルに従って顔画像の表情を操作できるモデルを提案する。
論文 参考訳(メタデータ) (2020-06-22T13:03:02Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。