Analysis of Corrected Graph Convolutions
- URL: http://arxiv.org/abs/2405.13987v1
- Date: Wed, 22 May 2024 20:50:17 GMT
- Title: Analysis of Corrected Graph Convolutions
- Authors: Robert Wang, Aseem Baranwal, Kimon Fountoulakis,
- Abstract summary: State-of-the-art machine learning models often use multiple graph convolutions on the data.
We show that too many graph convolutions can degrade performance significantly, a phenomenon known as oversmoothing.
We show that each round of convolution can reduce the misclassification error exponentially up to a saturation level.
- Score: 10.991475575578855
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Machine learning for node classification on graphs is a prominent area driven by applications such as recommendation systems. State-of-the-art models often use multiple graph convolutions on the data, as empirical evidence suggests they can enhance performance. However, it has been shown empirically and theoretically, that too many graph convolutions can degrade performance significantly, a phenomenon known as oversmoothing. In this paper, we provide a rigorous theoretical analysis, based on the contextual stochastic block model (CSBM), of the performance of vanilla graph convolution from which we remove the principal eigenvector to avoid oversmoothing. We perform a spectral analysis for $k$ rounds of corrected graph convolutions, and we provide results for partial and exact classification. For partial classification, we show that each round of convolution can reduce the misclassification error exponentially up to a saturation level, after which performance does not worsen. For exact classification, we show that the separability threshold can be improved exponentially up to $O({\log{n}}/{\log\log{n}})$ corrected convolutions.
Related papers
- Positive-Unlabeled Node Classification with Structure-aware Graph
Learning [40.476865943437055]
Existing works on positive-unlabeled (PU) node classification overlook information in the graph structure.
We propose a distance-aware PU loss that uses homophily in graphs to introduce more accurate supervision.
We also propose a regularizer to align the model with graph structure.
arXiv Detail & Related papers (2023-10-20T14:32:54Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties.
Due to the selection bias of training and testing data, distribution deviation is widespread.
We propose OOD calibration to measure the distribution deviation of virtual samples.
arXiv Detail & Related papers (2023-08-16T13:10:27Z) - Explaining and Adapting Graph Conditional Shift [28.532526595793364]
Graph Neural Networks (GNNs) have shown remarkable performance on graph-structured data.
Recent empirical studies suggest that GNNs are very susceptible to distribution shift.
arXiv Detail & Related papers (2023-06-05T21:17:48Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
We investigate efficient learning from higher-order graph convolution and learning directly from adjacency matrix for node classification.
We show that the resulting model lead to new graphs and residual scaling parameter.
We demonstrate that the proposed methods obtain improved accuracy for node-classification of non-homophilous parameters.
arXiv Detail & Related papers (2022-09-12T04:46:55Z) - Demystifying Graph Convolution with a Simple Concatenation [6.542119695695405]
We quantify the information overlap between graph topology, node features, and labels.
We show that graph concatenation is a simple but more flexible alternative to graph convolution.
arXiv Detail & Related papers (2022-07-18T16:39:33Z) - Beyond spectral gap: The role of the topology in decentralized learning [58.48291921602417]
In data-parallel optimization of machine learning models, workers collaborate to improve their estimates of the model.
This paper aims to paint an accurate picture of sparsely-connected distributed optimization when workers share the same data distribution.
Our theory matches empirical observations in deep learning, and accurately describes the relative merits of different graph topologies.
arXiv Detail & Related papers (2022-06-07T08:19:06Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Effects of Graph Convolutions in Deep Networks [8.937905773981702]
We present a rigorous theoretical understanding of the effects of graph convolutions in multi-layer networks.
We show that a single graph convolution expands the regime of the distance between the means where multi-layer networks can classify the data.
We provide both theoretical and empirical insights into the performance of graph convolutions placed in different combinations among the layers of a network.
arXiv Detail & Related papers (2022-04-20T08:24:43Z) - Graph Kernel Neural Networks [53.91024360329517]
We propose to use graph kernels, i.e. kernel functions that compute an inner product on graphs, to extend the standard convolution operator to the graph domain.
This allows us to define an entirely structural model that does not require computing the embedding of the input graph.
Our architecture allows to plug-in any type of graph kernels and has the added benefit of providing some interpretability.
arXiv Detail & Related papers (2021-12-14T14:48:08Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
We present Dirichlet Graph Variational Autoencoder (DGVAE) with graph cluster memberships as latent factors.
Motivated by the low pass characteristics in balanced graph cut, we propose a new variant of GNN named Heatts to encode the input graph into cluster memberships.
arXiv Detail & Related papers (2020-10-09T07:35:26Z) - The Power of Graph Convolutional Networks to Distinguish Random Graph
Models: Short Version [27.544219236164764]
Graph convolutional networks (GCNs) are a widely used method for graph representation learning.
We investigate the power of GCNs to distinguish between different random graph models on the basis of the embeddings of their sample graphs.
arXiv Detail & Related papers (2020-02-13T17:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.