AI, Climate, and Regulation: From Data Centers to the AI Act
- URL: http://arxiv.org/abs/2410.06681v1
- Date: Wed, 9 Oct 2024 08:43:53 GMT
- Title: AI, Climate, and Regulation: From Data Centers to the AI Act
- Authors: Kai Ebert, Nicolas Alder, Ralf Herbrich, Philipp Hacker,
- Abstract summary: We aim to provide guidance on the climate-related regulation for data centers and AI specifically.
We propose a specific interpretation of the AI Act to bring reporting on the previously unadressed energy consumption from AI inferences back into the scope.
We argue for an interpretation of the AI Act that includes environmental concerns in the mandatory risk assessment.
- Score: 2.874893537471256
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We live in a world that is experiencing an unprecedented boom of AI applications that increasingly penetrate and enhance all sectors of private and public life, from education, media, medicine, and mobility to the industrial and professional workspace, and -- potentially particularly consequentially -- robotics. As this world is simultaneously grappling with climate change, the climate and environmental implications of the development and use of AI have become an important subject of public and academic debate. In this paper, we aim to provide guidance on the climate-related regulation for data centers and AI specifically, and discuss how to operationalize these requirements. We also highlight challenges and room for improvement, and make a number of policy proposals to this end. In particular, we propose a specific interpretation of the AI Act to bring reporting on the previously unadressed energy consumption from AI inferences back into the scope. We also find that the AI Act fails to address indirect greenhouse gas emissions from AI applications. Furthermore, for the purpose of energy consumption reporting, we compare levels of measurement within data centers and recommend measurement at the cumulative server level. We also argue for an interpretation of the AI Act that includes environmental concerns in the mandatory risk assessment (sustainability risk assessment, SIA), and provide guidance on its operationalization. The EU data center regulation proves to be a good first step but requires further development by including binding renewable energy and efficiency targets for data centers. Overall, we make twelve concrete policy proposals, in four main areas: Energy and Environmental Reporting Obligations; Legal and Regulatory Clarifications; Transparency and Accountability Mechanisms; and Future Far-Reaching Measures beyond Transparency.
Related papers
- AI, Climate, and Transparency: Operationalizing and Improving the AI Act [2.874893537471256]
This paper critically examines the AI Act's provisions on climate-related transparency.
We identify key shortcomings, including the exclusion of energy consumption during AI inference.
We propose a novel interpretation to bring inference-related energy use back within the Act's scope.
arXiv Detail & Related papers (2024-08-28T07:57:39Z) - Responsible AI for Earth Observation [10.380878519901998]
We systematically define the intersection of AI and EO, with a central focus on responsible AI practices.
We identify several critical components guiding this exploration from both academia and industry perspectives.
The paper explores potential opportunities and emerging trends, providing valuable insights for future research endeavors.
arXiv Detail & Related papers (2024-05-31T14:47:27Z) - Towards A Comprehensive Assessment of AI's Environmental Impact [0.5982922468400899]
Recent surge of interest in machine learning has sparked a trend towards large-scale adoption of AI/ML.
There is a need for a framework that monitors the environmental impact and degradation from AI/ML throughout its lifecycle.
This study proposes a methodology to track environmental variables relating to the multifaceted impact of AI around datacenters using openly available energy data and globally acquired satellite observations.
arXiv Detail & Related papers (2024-05-22T21:19:35Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source Generative AI.
arXiv Detail & Related papers (2024-04-25T21:14:24Z) - The Role of Intelligent Transportation Systems and Artificial
Intelligence in Energy Efficiency and Emission Reduction [4.847470451539329]
We explore the role of intelligent transportation systems (ITSs) and artificial intelligence (AI) in future enhanced energy and emission reduction (EER)
More specifically, we discuss the impact of sensors at different levels of ITS on improving EER.
We also investigate the potential networking connections in ITSs and provide an illustration of how they improve EER.
arXiv Detail & Related papers (2024-01-25T23:07:32Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - AI For Global Climate Cooperation 2023 Competition Proceedings [77.07135605362795]
No global authority can ensure compliance with international climate agreements.
RICE-N supports modeling regional decision-making using AI agents.
The IAM then models the climate-economic impact of those decisions into the future.
arXiv Detail & Related papers (2023-07-10T20:05:42Z) - Sustainable AI Regulation [3.0821115746307663]
The ICT sector contributes up to 3.9 percent of global greenhouse gas emissions.
The carbon footprint water consumption of AI, especially large-scale generative models like GPT-4, raise significant sustainability concerns.
The paper suggests a multi-faceted approach to achieve sustainable AI regulation.
arXiv Detail & Related papers (2023-06-01T02:20:48Z) - Artificial intelligence to advance Earth observation: : A review of models, recent trends, and pathways forward [60.43248801101935]
This article gives a bird's eye view of the essential scientific tools and approaches informing and supporting the transition from raw EO data to usable EO-based information.
We cover the impact of (i) Computer vision; (ii) Machine learning; (iii) Advanced processing and computing; (iv) Knowledge-based AI; (v) Explainable AI and causal inference; (vi) Physics-aware models; (vii) User-centric approaches; and (viii) the much-needed discussion of ethical and societal issues related to the massive use of ML technologies in EO.
arXiv Detail & Related papers (2023-05-15T07:47:24Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.