論文の概要: A Study of Posterior Stability for Time-Series Latent Diffusion
- arxiv url: http://arxiv.org/abs/2405.14021v1
- Date: Wed, 22 May 2024 21:54:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 19:54:29.243496
- Title: A Study of Posterior Stability for Time-Series Latent Diffusion
- Title(参考訳): 時間列遅延拡散における後部安定性の検討
- Authors: Yangming Li, Mihaela van der Schaar,
- Abstract要約: まず, 後方崩壊はVOEへの潜伏拡散を減少させ, 表現力の低下を招いた。
拡散モデルからサンプリングした潜伏変数が生成過程の制御を失うことを示す。
また, 後方崩壊の原因を解析し, この問題に対処し, より表現力のある事前分布をサポートする新しい枠組みを導入する。
- 参考スコア(独自算出の注目度): 65.95306174480034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Latent diffusion has shown promising results in image generation and permits efficient sampling. However, this framework might suffer from the problem of posterior collapse when applied to time series. In this paper, we conduct an impact analysis of this problem. With a theoretical insight, we first explain that posterior collapse reduces latent diffusion to a VAE, making it less expressive. Then, we introduce the notion of dependency measures, showing that the latent variable sampled from the diffusion model loses control of the generation process in this situation and that latent diffusion exhibits dependency illusion in the case of shuffled time series. We also analyze the causes of posterior collapse and introduce a new framework based on this analysis, which addresses the problem and supports a more expressive prior distribution. Our experiments on various real-world time-series datasets demonstrate that our new model maintains a stable posterior and outperforms the baselines in time series generation.
- Abstract(参考訳): 遅延拡散は画像生成において有望な結果を示し、効率的なサンプリングを可能にしている。
しかし、この枠組みは時系列に適用した場合、後続崩壊の問題に悩まされる可能性がある。
本稿では,この問題に対する影響分析を行う。
理論的考察から, 後部崩壊はVOEへの潜伏拡散を減少させ, 表現力の低下を招いた。
そこで,本研究では,拡散モデルから抽出した潜伏変数が生成過程の制御を失い,シャッフル時系列の場合,潜伏拡散が依存性錯覚を示すことを示す。
また, 後方崩壊の原因を解析し, この問題に対処し, より表現力のある事前分布をサポートする新しい枠組みを導入する。
実世界の時系列データセットに対する実験により,我々の新モデルが安定な後続モデルを維持し,時系列生成におけるベースラインを上回ることを示す。
関連論文リスト
- Retrieval-Augmented Diffusion Models for Time Series Forecasting [19.251274915003265]
検索時間拡張拡散モデル(RATD)を提案する。
RATDは埋め込みベースの検索プロセスと参照誘導拡散モデルという2つの部分から構成される。
当社のアプローチでは,データベース内の意味のあるサンプルを活用することで,サンプリングを支援し,データセットの利用を最大化することが可能です。
論文 参考訳(メタデータ) (2024-10-24T13:14:39Z) - Causal Discovery from Time-Series Data with Short-Term Invariance-Based Convolutional Neural Networks [12.784885649573994]
時系列データによる因果発見は、スライス内(同時)とスライス間(時差)の両方の因果関係を捉えることを目的としている。
我々は, textbfShort-textbfTerm textbfInvariance に着目した勾配に基づく因果探索手法 STIC を提案する。
論文 参考訳(メタデータ) (2024-08-15T08:43:28Z) - Diffusion-TS: Interpretable Diffusion for General Time Series Generation [6.639630994040322]
Diffusion-TSは、高品質な時系列サンプルを生成する新しい拡散ベースのフレームワークである。
各拡散ステップのノイズの代わりにサンプルを直接再構成するようにモデルを訓練し、フーリエに基づく損失項を組み合わせた。
その結果,Diffusion-TSは時系列の様々な現実的解析において最先端の結果が得られることがわかった。
論文 参考訳(メタデータ) (2024-03-04T05:39:23Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
拡散モデルは、以前の文脈における瞬間的な入出力関係ではなく、一連のタイムステップで操作する。
本稿では、この時間的ダイナミクスを取り入れた拡散トラクInについて、サンプルの損失勾配ノルムが時間ステップに大きく依存していることを確認する。
そこで我々はDiffusion-ReTracを再正規化適応として導入し、興味のあるサンプルを対象にしたトレーニングサンプルの検索を可能にする。
論文 参考訳(メタデータ) (2024-01-17T07:58:18Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
本研究では,非意味情報のバイアスを緩和する効率的な新規性検出手法であるemphProjection Regret(PR)を提案する。
PRは、テスト画像とその拡散ベースの投影の間の知覚距離を計算し、異常を検出する。
拡張実験により、PRは生成モデルに基づく新規性検出手法の先行技術よりも有意なマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-12-05T09:44:47Z) - SWoTTeD: An Extension of Tensor Decomposition to Temporal Phenotyping [0.0]
隠れ時間パターンを発見する新しい手法SWoTTeD(Sliding Window for Temporal Decomposition)を提案する。
我々は, 合成と実世界の両方のデータセットを用いて提案手法を検証し, パリ大病院のデータを用いた独自のユースケースを提案する。
その結果、SWoTTeDは最近の最先端テンソル分解モデルと同程度の精度で再現可能であることがわかった。
論文 参考訳(メタデータ) (2023-10-02T13:42:11Z) - Reconstructing Graph Diffusion History from a Single Snapshot [87.20550495678907]
A single SnapsHot (DASH) から拡散履歴を再構築するための新しいバリセンターの定式化を提案する。
本研究では,拡散パラメータ推定のNP硬度により,拡散パラメータの推定誤差が避けられないことを証明する。
また、DITTO(Diffusion hitting Times with Optimal proposal)という効果的な解法も開発している。
論文 参考訳(メタデータ) (2023-06-01T09:39:32Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。