論文の概要: A Study of Posterior Stability for Time-Series Latent Diffusion
- arxiv url: http://arxiv.org/abs/2405.14021v2
- Date: Wed, 02 Oct 2024 18:40:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-05 03:34:09.775035
- Title: A Study of Posterior Stability for Time-Series Latent Diffusion
- Title(参考訳): 時間列遅延拡散における後部安定性の検討
- Authors: Yangming Li, Yixin Cheng, Mihaela van der Schaar,
- Abstract要約: まず,後部崩壊により可変オートエンコーダ(VAE)への潜伏拡散が減少し,表現性が低下することを示す。
次に、入力変数に対するリカレントデコーダの感度を定量化する、依存性測度という原則的手法を導入する。
理論的および実証的研究に基づいて,潜伏拡散を延長し,後部が安定な新しい枠組みを導入する。
- 参考スコア(独自算出の注目度): 59.41969496514184
- License:
- Abstract: Latent diffusion has demonstrated promising results in image generation and permits efficient sampling. However, this framework might suffer from the problem of posterior collapse when applied to time series. In this paper, we first show that posterior collapse will reduce latent diffusion to a variational autoencoder (VAE), making it less expressive. This highlights the importance of addressing this issue. We then introduce a principled method: dependency measure, that quantifies the sensitivity of a recurrent decoder to input variables. Using this tool, we confirm that posterior collapse significantly affects time-series latent diffusion on real datasets, and a phenomenon termed dependency illusion is also discovered in the case of shuffled time series. Finally, building on our theoretical and empirical studies, we introduce a new framework that extends latent diffusion and has a stable posterior. Extensive experiments on multiple real time-series datasets show that our new framework is free from posterior collapse and significantly outperforms previous baselines in time series synthesis.
- Abstract(参考訳): 遅延拡散は画像生成において有望な結果を示し、効率的なサンプリングを可能にしている。
しかし、この枠組みは時系列に適用した場合、後続崩壊の問題に悩まされる可能性がある。
本稿では, 後部崩壊により可変オートエンコーダ (VAE) への遅延拡散が減少し, 表現性が低下することを示す。
これはこの問題に対処することの重要性を強調している。
次に、入力変数に対するリカレントデコーダの感度を定量化する、依存性測度という原則的手法を導入する。
このツールを用いて、後続崩壊が実際のデータセット上での時系列遅延拡散に大きな影響を与えていることを確認し、シャッフル時系列の場合にも依存性錯覚と呼ばれる現象が発見された。
最後に, 理論的および実証的研究に基づいて, 潜伏拡散を延長し, 後部が安定な新しい枠組みを導入する。
複数の実時間時系列データセットに対する大規模な実験により、我々の新しいフレームワークは後続の崩壊を免れ、時系列合成における過去のベースラインを著しく上回っていることが示された。
関連論文リスト
- Retrieval-Augmented Diffusion Models for Time Series Forecasting [19.251274915003265]
検索時間拡張拡散モデル(RATD)を提案する。
RATDは埋め込みベースの検索プロセスと参照誘導拡散モデルという2つの部分から構成される。
当社のアプローチでは,データベース内の意味のあるサンプルを活用することで,サンプリングを支援し,データセットの利用を最大化することが可能です。
論文 参考訳(メタデータ) (2024-10-24T13:14:39Z) - Causal Discovery from Time-Series Data with Short-Term Invariance-Based Convolutional Neural Networks [12.784885649573994]
時系列データによる因果発見は、スライス内(同時)とスライス間(時差)の両方の因果関係を捉えることを目的としている。
我々は, textbfShort-textbfTerm textbfInvariance に着目した勾配に基づく因果探索手法 STIC を提案する。
論文 参考訳(メタデータ) (2024-08-15T08:43:28Z) - Diffusion-TS: Interpretable Diffusion for General Time Series Generation [6.639630994040322]
Diffusion-TSは、高品質な時系列サンプルを生成する新しい拡散ベースのフレームワークである。
各拡散ステップのノイズの代わりにサンプルを直接再構成するようにモデルを訓練し、フーリエに基づく損失項を組み合わせた。
その結果,Diffusion-TSは時系列の様々な現実的解析において最先端の結果が得られることがわかった。
論文 参考訳(メタデータ) (2024-03-04T05:39:23Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
拡散モデルは、以前の文脈における瞬間的な入出力関係ではなく、一連のタイムステップで操作する。
本稿では、この時間的ダイナミクスを取り入れた拡散トラクInについて、サンプルの損失勾配ノルムが時間ステップに大きく依存していることを確認する。
そこで我々はDiffusion-ReTracを再正規化適応として導入し、興味のあるサンプルを対象にしたトレーニングサンプルの検索を可能にする。
論文 参考訳(メタデータ) (2024-01-17T07:58:18Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
本研究では,非意味情報のバイアスを緩和する効率的な新規性検出手法であるemphProjection Regret(PR)を提案する。
PRは、テスト画像とその拡散ベースの投影の間の知覚距離を計算し、異常を検出する。
拡張実験により、PRは生成モデルに基づく新規性検出手法の先行技術よりも有意なマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-12-05T09:44:47Z) - SWoTTeD: An Extension of Tensor Decomposition to Temporal Phenotyping [0.0]
隠れ時間パターンを発見する新しい手法SWoTTeD(Sliding Window for Temporal Decomposition)を提案する。
我々は, 合成と実世界の両方のデータセットを用いて提案手法を検証し, パリ大病院のデータを用いた独自のユースケースを提案する。
その結果、SWoTTeDは最近の最先端テンソル分解モデルと同程度の精度で再現可能であることがわかった。
論文 参考訳(メタデータ) (2023-10-02T13:42:11Z) - Reconstructing Graph Diffusion History from a Single Snapshot [87.20550495678907]
A single SnapsHot (DASH) から拡散履歴を再構築するための新しいバリセンターの定式化を提案する。
本研究では,拡散パラメータ推定のNP硬度により,拡散パラメータの推定誤差が避けられないことを証明する。
また、DITTO(Diffusion hitting Times with Optimal proposal)という効果的な解法も開発している。
論文 参考訳(メタデータ) (2023-06-01T09:39:32Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。