論文の概要: A finite time analysis of distributed Q-learning
- arxiv url: http://arxiv.org/abs/2405.14078v1
- Date: Thu, 23 May 2024 00:52:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 19:34:41.482794
- Title: A finite time analysis of distributed Q-learning
- Title(参考訳): 分散Q-ラーニングの有限時間解析
- Authors: Han-Dong Lim, Donghwan Lee,
- Abstract要約: マルチエージェント強化学習(MARL)は、単一エージェント強化学習(RL)の適用において達成された経験的成功によって、目覚ましい関心の高まりを目撃している。
本研究では,多くのエージェントが局所報酬の平均値である中央報酬関数にアクセスせずに逐次意思決定問題を協調的に解決する分散Q-ラーニングシナリオについて考察する。
- 参考スコア(独自算出の注目度): 6.663174194579773
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent reinforcement learning (MARL) has witnessed a remarkable surge in interest, fueled by the empirical success achieved in applications of single-agent reinforcement learning (RL). In this study, we consider a distributed Q-learning scenario, wherein a number of agents cooperatively solve a sequential decision making problem without access to the central reward function which is an average of the local rewards. In particular, we study finite-time analysis of a distributed Q-learning algorithm, and provide a new sample complexity result of $\tilde{\mathcal{O}}\left( \min\left\{\frac{1}{\epsilon^2}\frac{t_{\text{mix}}}{(1-\gamma)^6 d_{\min}^4 } ,\frac{1}{\epsilon}\frac{\sqrt{|\gS||\gA|}}{(1-\sigma_2(\boldsymbol{W}))(1-\gamma)^4 d_{\min}^3} \right\}\right)$ under tabular lookup
- Abstract(参考訳): マルチエージェント強化学習(MARL)は、シングルエージェント強化学習(RL)の適用で達成された経験的成功によって、目覚ましい関心の高まりを目撃している。
本研究では,多くのエージェントが局所報酬の平均値である中央報酬関数にアクセスせずに逐次意思決定問題を協調的に解決する分散Q-ラーニングシナリオについて考察する。
特に、分散Q-ラーニングアルゴリズムの有限時間解析について検討し、新しいサンプル複雑性結果である $\tilde{\mathcal{O}}\left( \min\left\{\frac{1}{\epsilon^2}\frac{t_{\text{mix}}}{(1-\gamma)^6 d_{\min}^4 } ,\frac{1}{\epsilon}\frac{\sqrt{|\gS||\gA|}}{(1-\sigma_2(\boldsymbol{W}))(1-\gamma)^4 d_{\min}^3} \right\right)$
関連論文リスト
- Learning general Gaussian mixtures with efficient score matching [16.06356123715737]
我々は、$d$次元で$k$ガウシアンの混合を学習する問題を研究する。
我々は、下層の混合成分について分離を前提としない。
我々は、ターゲット混合物から$dmathrmpoly(k/varepsilon)$サンプルを抽出し、サンプル-ポリノミカル時間で実行し、サンプリング器を構築するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-29T17:30:36Z) - An Improved Analysis of Gradient Tracking for Decentralized Machine
Learning [34.144764431505486]
トレーニングデータが$n$エージェントに分散されるネットワーク上での分散機械学習を検討する。
エージェントの共通の目標は、すべての局所損失関数の平均を最小化するモデルを見つけることである。
ノイズのない場合、$p$を$mathcalO(p-1)$から$mathcalO(p-1)$に改善します。
論文 参考訳(メタデータ) (2022-02-08T12:58:14Z) - Polyak-Ruppert Averaged Q-Leaning is Statistically Efficient [90.14768299744792]
我々はPolyak-Ruppert 平均 Q-leaning (平均 Q-leaning) を用いた同期 Q-learning を$gamma$-discounted MDP で検討した。
繰り返し平均$barboldsymbolQ_T$に対して正規性を確立する。
要するに、我々の理論分析は、Q-Leaningの平均は統計的に効率的であることを示している。
論文 参考訳(メタデータ) (2021-12-29T14:47:56Z) - Reinforcement Learning in Reward-Mixing MDPs [74.41782017817808]
報酬混合マルコフ決定過程(MDP)におけるエピソード強化学習
cdot S2 A2)$ episodes, where$H$ is time-horizon and $S, A$ are the number of state and actions。
epsilon$-optimal policy after $tildeO(poly(H,epsilon-1) cdot S2 A2)$ episodes, $H$ is time-horizon and $S, A$ are the number of state and actions。
論文 参考訳(メタデータ) (2021-10-07T18:55:49Z) - Tightening the Dependence on Horizon in the Sample Complexity of
Q-Learning [59.71676469100807]
この研究は、同期Q-ラーニングのサンプルの複雑さを、任意の$0varepsilon 1$に対して$frac|mathcalS| (1-gamma)4varepsilon2$の順序に絞る。
計算やストレージを余分に必要とせずに、高速なq-learningにマッチするvanilla q-learningの有効性を明らかにした。
論文 参考訳(メタデータ) (2021-02-12T14:22:05Z) - Finite-Time Analysis for Double Q-learning [50.50058000948908]
二重Q-ラーニングのための非漸近的有限時間解析を初めて提供する。
同期と非同期の二重Q-ラーニングの両方が,グローバル最適化の$epsilon$-accurate近辺に収束することが保証されていることを示す。
論文 参考訳(メタデータ) (2020-09-29T18:48:21Z) - Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal
Sample Complexity [67.02490430380415]
モデルに基づくMARLは、Nash平衡値(NE)を求めるために$tilde O(|S||B|(gamma)-3epsilon-2)$のサンプル複雑性を実現する。
また、アルゴリズムが報酬に依存しない場合、そのようなサンプル境界は最小値(対数因子まで)であり、アルゴリズムは報酬知識のない遷移サンプルを問合せする。
論文 参考訳(メタデータ) (2020-07-15T03:25:24Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
非同期Q-ラーニングはマルコフ決定過程(MDP)の最適行動値関数(またはQ-関数)を学習することを目的としている。
Q-関数の入出力$varepsilon$-正確な推定に必要なサンプルの数は、少なくとも$frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$の順である。
論文 参考訳(メタデータ) (2020-06-04T17:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。