GeoAI-Enhanced Community Detection on Spatial Networks with Graph Deep Learning
- URL: http://arxiv.org/abs/2411.15428v1
- Date: Sat, 23 Nov 2024 03:09:34 GMT
- Title: GeoAI-Enhanced Community Detection on Spatial Networks with Graph Deep Learning
- Authors: Yunlei Liang, Jiawei Zhu, Wen Ye, Song Gao,
- Abstract summary: This study proposes a family of GeoAI-enhanced unsupervised community detection methods called region2vec.
The proposed GeoAI-based methods are compared with multiple baselines and perform the best when one wants to maximize node attribute similarity and spatial interaction intensity simultaneously.
It is further applied in the shortage area delineation problem in public health and demonstrates its promise in regionalization problems.
- Score: 2.3646445757741064
- License:
- Abstract: Spatial networks are useful for modeling geographic phenomena where spatial interaction plays an important role. To analyze the spatial networks and their internal structures, graph-based methods such as community detection have been widely used. Community detection aims to extract strongly connected components from the network and reveal the hidden relationships between nodes, but they usually do not involve the attribute information. To consider edge-based interactions and node attributes together, this study proposed a family of GeoAI-enhanced unsupervised community detection methods called region2vec based on Graph Attention Networks (GAT) and Graph Convolutional Networks (GCN). The region2vec methods generate node neural embeddings based on attribute similarity, geographic adjacency and spatial interactions, and then extract network communities based on node embeddings using agglomerative clustering. The proposed GeoAI-based methods are compared with multiple baselines and perform the best when one wants to maximize node attribute similarity and spatial interaction intensity simultaneously within the spatial network communities. It is further applied in the shortage area delineation problem in public health and demonstrates its promise in regionalization problems.
Related papers
- HACD: Harnessing Attribute Semantics and Mesoscopic Structure for Community Detection [3.389327931408283]
Community detection plays a pivotal role in uncovering closely connected subgraphs.
Previous research has effectively leveraged network topology and attribute information for attributed community detection.
We propose HACD, a novel attributed community detection model based on heterogeneous graph attention networks.
arXiv Detail & Related papers (2024-11-04T10:16:59Z) - Learning Geospatial Region Embedding with Heterogeneous Graph [16.864563545518124]
We present GeoHG, an effective heterogeneous graph structure for learning comprehensive region embeddings for various downstream tasks.
Specifically, we tailor satellite image representation learning through geo-entity segmentation and point-of-interest (POI) integration for expressive intra-regional features.
GeoHG unifies informative spatial interdependencies and socio-environmental attributes into a powerful heterogeneous graph to encourage explicit modeling of higher-order inter-regional relationships.
arXiv Detail & Related papers (2024-05-23T03:19:02Z) - Domain-adaptive Message Passing Graph Neural Network [67.35534058138387]
Cross-network node classification (CNNC) aims to classify nodes in a label-deficient target network by transferring the knowledge from a source network with abundant labels.
We propose a domain-adaptive message passing graph neural network (DM-GNN), which integrates graph neural network (GNN) with conditional adversarial domain adaptation.
arXiv Detail & Related papers (2023-08-31T05:26:08Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Region2Vec: Community Detection on Spatial Networks Using Graph
Embedding with Node Attributes and Spatial Interactions [2.1793134762413437]
We propose an unsupervised GCN-based community detection method "region2vec" on spatial networks.
Our method first generates node embeddings for regions that share common attributes and have intense spatial interactions.
Experimental results show that while existing methods trade off either attribute similarities or spatial interactions for one another, "region2vec" maintains a great balance between both.
arXiv Detail & Related papers (2022-10-10T02:32:55Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - Detecting Communities from Heterogeneous Graphs: A Context Path-based
Graph Neural Network Model [23.525079144108567]
We build a Context Path-based Graph Neural Network (CP-GNN) model.
It embeds the high-order relationship between nodes into the node embedding.
It outperforms the state-of-the-art community detection methods.
arXiv Detail & Related papers (2021-09-05T12:28:00Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
We study how local structural network properties can be used as proxies to improve the efficiency of hierarchical community detection.
We also check the performance impact of network prunings as an ancillary tactic to make hierarchical community detection more efficient.
arXiv Detail & Related papers (2020-09-15T00:16:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.