論文の概要: Imagery as Inquiry: Exploring A Multimodal Dataset for Conversational Recommendation
- arxiv url: http://arxiv.org/abs/2405.14142v1
- Date: Thu, 23 May 2024 03:36:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 19:05:09.659847
- Title: Imagery as Inquiry: Exploring A Multimodal Dataset for Conversational Recommendation
- Title(参考訳): 質問としてのイメージ:会話推薦のためのマルチモーダルデータセットの探索
- Authors: Se-eun Yoon, Hyunsik Jeon, Julian McAuley,
- Abstract要約: このデータセットはタイトル生成と複数選択という2つの推奨タスクをサポートする。
本稿では,画像の連鎖的プロンプトを提案し,その結果,顕著な改善が得られた。
- 参考スコア(独自算出の注目度): 18.913912876509187
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a multimodal dataset where users express preferences through images. These images encompass a broad spectrum of visual expressions ranging from landscapes to artistic depictions. Users request recommendations for books or music that evoke similar feelings to those captured in the images, and recommendations are endorsed by the community through upvotes. This dataset supports two recommendation tasks: title generation and multiple-choice selection. Our experiments with large foundation models reveal their limitations in these tasks. Particularly, vision-language models show no significant advantage over language-only counterparts that use descriptions, which we hypothesize is due to underutilized visual capabilities. To better harness these abilities, we propose the chain-of-imagery prompting, which results in notable improvements. We release our code and datasets.
- Abstract(参考訳): ユーザの好みを画像で表現するマルチモーダルデータセットを提案する。
これらの画像は、風景から芸術的な描写まで幅広い視覚表現を含んでいる。
ユーザーは、画像に写っているものと同様の感情を誘発する本や音楽のレコメンデーションをリクエストする。
このデータセットはタイトル生成と複数選択という2つの推奨タスクをサポートする。
大規模な基礎モデルによる実験は,これらの課題における限界を明らかにする。
特に、視覚言語モデルでは、記述を使用する言語のみと比較して大きな優位性は示されていない。
これらの能力をより有効活用するために、我々は画像の連鎖プロンプトを提案し、それによって顕著な改善がもたらされる。
コードとデータセットをリリースします。
関連論文リスト
- Towards Retrieval-Augmented Architectures for Image Captioning [81.11529834508424]
本研究は,外部kNNメモリを用いた画像キャプションモデルの構築に向けた新しい手法を提案する。
具体的には、視覚的類似性に基づく知識検索コンポーネントを組み込んだ2つのモデル変種を提案する。
我々はCOCOデータセットとnocapsデータセットに対する我々のアプローチを実験的に検証し、明示的な外部メモリを組み込むことでキャプションの品質を著しく向上させることができることを示した。
論文 参考訳(メタデータ) (2024-05-21T18:02:07Z) - You'll Never Walk Alone: A Sketch and Text Duet for Fine-Grained Image Retrieval [120.49126407479717]
事前学習したCLIPモデルを用いて,スケッチとテキストを効果的に組み合わせた新しい構成性フレームワークを提案する。
我々のシステムは、合成画像検索、ドメイン転送、きめ細かい生成における新しい応用にまで拡張する。
論文 参考訳(メタデータ) (2024-03-12T00:27:18Z) - Weakly Supervised Annotations for Multi-modal Greeting Cards Dataset [8.397847537464534]
我々は,Greeting Cardsデータセットから抽象的な視覚概念を学ぶために,事前訓練された画像とテキスト埋め込みから特徴を集約することを提案する。
提案したデータセットは、事前訓練されたテキスト・ツー・イメージ生成モデルを用いて、挨拶カード画像を生成するのにも有用である。
論文 参考訳(メタデータ) (2022-12-01T20:07:52Z) - NewsStories: Illustrating articles with visual summaries [49.924916589209374]
我々は,3300万記事,2200万画像,100万ビデオを含む大規模マルチモーダルデータセットを提案する。
現状の画像テキストアライメント手法は、複数の画像を持つ長い物語に対して堅牢ではないことを示す。
本稿では,GoodNewsデータセット上で,ゼロショット画像セット検索において,これらの手法を10%向上させる直感的なベースラインを提案する。
論文 参考訳(メタデータ) (2022-07-26T17:34:11Z) - Multimodal Neural Machine Translation with Search Engine Based Image
Retrieval [4.662583832063716]
バイリンガルパラレルコーパスのための記述画像収集のためのオープン語彙画像検索手法を提案する。
提案手法は,強いベースラインに対する大幅な改善を実現する。
論文 参考訳(メタデータ) (2022-07-26T08:42:06Z) - Two-stage Visual Cues Enhancement Network for Referring Image
Segmentation [89.49412325699537]
Referring Image (RIS)は、ある自然言語表現によって参照される画像から対象のオブジェクトをセグメント化することを目的としている。
本稿では,2段階のビジュアルキュー拡張ネットワーク(TV-Net)を考案し,この問題に対処する。
この2段階の強化により,提案するTV-Netは,自然言語表現と画像間のきめ細かいマッチング動作の学習において,より優れた性能を享受できる。
論文 参考訳(メタデータ) (2021-10-09T02:53:39Z) - Exploring Semantic Relationships for Unpaired Image Captioning [40.401322131624866]
視覚領域と言語領域を高レベルな意味情報でブリッジすることで、不適切な画像キャプションを実現する。
画像の理解を深めるため,セマンティック・リレーション・エクスプローラーを提案する。
提案手法は,CIDErのスコアが8%に向上したペア設定下で,5つの強いベースラインを向上する。
論文 参考訳(メタデータ) (2021-06-20T09:10:11Z) - Text as Neural Operator: Image Manipulation by Text Instruction [68.53181621741632]
本稿では、複雑なテキスト命令を用いて複数のオブジェクトで画像を編集し、オブジェクトの追加、削除、変更を可能にする設定について検討する。
タスクの入力は、(1)参照画像を含むマルチモーダルであり、(2)所望の修正を記述した自然言語の命令である。
提案モデルは,最近の3つの公開データセットの強いベースラインに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2020-08-11T07:07:10Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
本稿では,画像表現とキャプション生成の両方を強化するために,キャプションで利用可能なセマンティクスをよりよく探求するための新しい画像キャプションアーキテクチャを提案する。
我々のモデルはまず,弱教師付きマルチインスタンス学習を用いて,有益な帰納バイアスをもたらすキャプション誘導型視覚関係グラフを構築した。
生成期間中、このモデルは、単語とオブジェクト/述語タグのシーケンスを共同で予測するために、マルチタスク学習を用いた視覚関係をさらに取り入れる。
論文 参考訳(メタデータ) (2020-06-21T14:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。