論文の概要: A Gap in Time: The Challenge of Processing Heterogeneous IoT Data in Digitalized Buildings
- arxiv url: http://arxiv.org/abs/2405.14267v2
- Date: Wed, 20 Nov 2024 06:50:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:11:00.687499
- Title: A Gap in Time: The Challenge of Processing Heterogeneous IoT Data in Digitalized Buildings
- Title(参考訳): 時間のギャップ: デジタル化された建物における異種IoTデータ処理の課題
- Authors: Xiachong Lin, Arian Prabowo, Imran Razzak, Hao Xue, Matthew Amos, Sam Behrens, Flora D. Salim,
- Abstract要約: 本研究は, ビル内およびビル間におけるIoTデータの多様性について検討した。
その結果、マルチモーダルデータ統合、ドメインインフォームドモデリング、自動データエンジニアリングパイプラインの必要性が強調された。
- 参考スコア(独自算出の注目度): 15.525789412274587
- License:
- Abstract: The increasing demand for sustainable energy solutions has driven the integration of digitalized buildings into the power grid, leveraging Internet-of-Things (IoT) technologies to enhance energy efficiency and operational performance. Despite their potential, effectively utilizing IoT point data within deep-learning frameworks presents significant challenges, primarily due to its inherent heterogeneity. This study investigates the diverse dimensions of IoT data heterogeneity in both intra-building and inter-building contexts, examining their implications for predictive modeling. A benchmarking analysis of state-of-the-art time series models highlights their performance on this complex dataset. The results emphasize the critical need for multi-modal data integration, domain-informed modeling, and automated data engineering pipelines. Additionally, the study advocates for collaborative efforts to establish high-quality public datasets, which are essential for advancing intelligent and sustainable energy management systems in digitalized buildings.
- Abstract(参考訳): 持続可能なエネルギーソリューションに対する需要の高まりにより、電力グリッドへのデジタル建物の統合が促進され、エネルギー効率と運用性能を向上させるためにIoT(Internet-of-Things)技術を活用するようになった。
その可能性にもかかわらず、ディープラーニングフレームワーク内でIoTポイントデータを効果的に活用することは、主にその固有の異種性のために、重大な課題を提起する。
本研究は,IoTデータの不均一性の多様さをビル内およびビル間両方の文脈で検討し,予測モデリングにおけるその意義について検討する。
最先端の時系列モデルのベンチマーク分析では、この複雑なデータセット上でのパフォーマンスを強調している。
その結果、マルチモーダルデータ統合、ドメインインフォームドモデリング、自動データエンジニアリングパイプラインの必要性が強調された。
さらに、デジタル化された建物におけるインテリジェントで持続可能なエネルギー管理システムの推進に不可欠な、高品質なパブリックデータセットを確立するための協力的な取り組みも提唱している。
関連論文リスト
- Earth System Data Cubes: Avenues for advancing Earth system research [4.408949931570938]
地球系データキューブ(ESDC)は、このデータの洪水をシンプルで堅牢なフォーマットに変換するのに適したソリューションの1つとして登場した。
ESDCは、データをテンポラリグリッドを備えた分析可能なフォーマットに整理することで、これを実現している。
新たなクラウドベースの技術に照らして、データの潜在能力を最大限に実現するための障壁がある。
論文 参考訳(メタデータ) (2024-08-05T09:50:16Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - On the Design of Ethereum Data Availability Sampling: A Comprehensive Simulation Study [0.0]
本稿では,データアベイラビリティサンプリング(DAS)と分散システム内のシャーディング機構をシミュレーションに基づく解析により詳細に調査する。
ブロックチェーン技術と分散ネットワークにおける重要な概念であるDASは、その複雑さを解明し、システムパフォーマンスへの影響を評価するために、徹底的に調査されている。
シミュレーション環境で一連の実験を行い、理論的な定式化を検証し、DASパラメータの相互作用を識別する。
論文 参考訳(メタデータ) (2024-07-25T14:47:41Z) - Exploring Artificial Intelligence Methods for Energy Prediction in
Healthcare Facilities: An In-Depth Extended Systematic Review [0.9208007322096533]
本研究は, 病院ビルのエネルギー消費予測に機械学習と人工知能技術を用いた論文のPRISMAフレームワークを用いた文献レビューを行った。
このレビューでは、エネルギー予測に影響を与えるさまざまなデータ入力が明らかにされ、占有率と気象データが重要な予測因子として出現した。
この発見は、病院のエネルギー消費を最適化するAIの巨大な可能性を浮き彫りにしただけでなく、より包括的できめ細かい研究の必要性も浮き彫りにしている。
論文 参考訳(メタデータ) (2023-11-27T13:30:20Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。
ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。
新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (2023-08-27T03:55:28Z) - Filling time-series gaps using image techniques: Multidimensional
context autoencoder approach for building energy data imputation [0.0]
エネルギー予測と管理の構築は、ここ数十年でますます重要になっている。
エネルギーデータは、しばしば複数のソースから収集され、不完全または矛盾する可能性がある。
この研究は、PConv、畳み込みニューラルネットワーク(CNN)、および、最も広く公開されている建築エネルギーデータセットの1つを使用した週毎の永続性手法を比較した。
論文 参考訳(メタデータ) (2023-07-12T05:46:37Z) - A Transformer Framework for Data Fusion and Multi-Task Learning in Smart
Cities [99.56635097352628]
本稿では,新興スマートシティを対象としたトランスフォーマーベースのAIシステムを提案する。
ほぼ全ての入力データと出力タスクタイプをサポートし、現在のS&CCをサポートする。
S&CC環境を代表する多様なタスクセットを学習して実演する。
論文 参考訳(メタデータ) (2022-11-18T20:43:09Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - A Federated Learning Approach to Anomaly Detection in Smart Buildings [5.177947445379688]
マルチタスク学習パラダイムを活用することにより,連合学習環境における異常検出問題を定式化する。
本稿では,LSTMモデルを用いた新しいプライバシ・バイ・デザイン・フェデレーション学習モデルを提案する。
集中型LSTMに比べてトレーニング収束時の2倍以上の速さであることが実証された。
論文 参考訳(メタデータ) (2020-10-20T14:06:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。