論文の概要: Exploring Capabilities of Time Series Foundation Models in Building Analytics
- arxiv url: http://arxiv.org/abs/2411.08888v1
- Date: Mon, 28 Oct 2024 02:49:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-17 09:02:15.643892
- Title: Exploring Capabilities of Time Series Foundation Models in Building Analytics
- Title(参考訳): 分析構築における時系列基礎モデルの能力を探る
- Authors: Xiachong Lin, Arian Prabowo, Imran Razzak, Hao Xue, Matthew Amos, Sam Behrens, Flora D. Salim,
- Abstract要約: モノのインターネット(IoT)ネットワークは、エネルギー消費の管理と最適化を変革した。
公開可能な2つのIoTデータセットの包括的なベンチマークを実施しています。
分析の結果, 単一モードモデルは, 建物におけるデータの変動性と物理的制約の複雑さを克服する上で, 極めて有望であることが示唆された。
- 参考スコア(独自算出の注目度): 15.525789412274587
- License:
- Abstract: The growing integration of digitized infrastructure with Internet of Things (IoT) networks has transformed the management and optimization of building energy consumption. By leveraging IoT-based monitoring systems, stakeholders such as building managers, energy suppliers, and policymakers can make data-driven decisions to improve energy efficiency. However, accurate energy forecasting and analytics face persistent challenges, primarily due to the inherent physical constraints of buildings and the diverse, heterogeneous nature of IoT-generated data. In this study, we conduct a comprehensive benchmarking of two publicly available IoT datasets, evaluating the performance of time series foundation models in the context of building energy analytics. Our analysis shows that single-modal models demonstrate significant promise in overcoming the complexities of data variability and physical limitations in buildings, with future work focusing on optimizing multi-modal models for sustainable energy management.
- Abstract(参考訳): デジタル化インフラストラクチャとIoT(Internet of Things)ネットワークの統合が拡大し、エネルギー消費の管理と最適化が変化した。
IoTベースの監視システムを活用することで、建設マネージャやエネルギーサプライヤー、政策立案者といったステークホルダーは、エネルギー効率を改善するためにデータ駆動による決定を下すことができる。
しかし、正確なエネルギー予測と分析は、主に建物固有の物理的制約と、IoT生成データの多様で異質な性質のために、永続的な課題に直面している。
本研究では,2つの公開可能なIoTデータセットの総合的なベンチマークを行い,時系列基盤モデルの性能をエネルギー分析の文脈で評価する。
分析の結果, シングルモーダルモデルは, 持続可能エネルギー管理のためのマルチモーダルモデルの最適化に重点を置き, 建物内のデータ変動性と物理的制約の複雑さを克服する上で大きな可能性を示唆している。
関連論文リスト
- Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することで、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
産業用IoT(Industrial Internet of Things, IIoT)デバイスを利用すれば、DTを構築するためのデータを共有するメカニズムは、悪い選択問題の影響を受けやすい。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - A Gap in Time: The Challenge of Processing Heterogeneous IoT Point Data in Buildings [15.06538531625261]
持続可能なエネルギーソリューションの必要性は、デジタル化された建物を電力網に統合するきっかけとなった。
エネルギー管理のためのディープラーニングフレームワークにIoTポイントデータを組み込むことは、複雑な課題である。
本稿では,実世界のIoTデータストリーム構築における多面的不均一性を包括的に分析する。
論文 参考訳(メタデータ) (2024-05-23T07:45:48Z) - A Survey on Semantic Modeling for Building Energy Management [0.2301816954855697]
本調査では, 建物におけるエネルギー管理のための主要なセマンティックモデリング手法について検討する。
セマンティックモデルを適用し、各モデルに固有の重要な概念と制限に光を当てる、具体的なユースケースを提供することを目的としている。
論文 参考訳(メタデータ) (2024-04-17T20:10:43Z) - The Forecastability of Underlying Building Electricity Demand from Time
Series Data [1.3757257689932039]
ビルのエネルギー消費予測は、ビルのエネルギー管理システムにおいて有望な解決策となっている。
建物の将来的なエネルギー需要を予測するデータ駆動のアプローチは、科学文献で見ることができる。
このような建物のエネルギー需要を予測するために利用できる最も正確な予測モデルの同定は依然として困難である。
論文 参考訳(メタデータ) (2023-11-29T20:47:47Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Smart Home Energy Management: VAE-GAN synthetic dataset generator and
Q-learning [15.995891934245334]
本稿では,スマートホームにおけるエネルギー消費に関する時系列データを生成するための,変分自動エンコーダ生成対向ネットワーク(VAE-GAN)手法を提案する。
実世界のスマートホームデータを用いて,Qラーニングに基づくHEMSのオンラインパフォーマンスを検証した。
論文 参考訳(メタデータ) (2023-05-14T22:22:16Z) - In Search of Deep Learning Architectures for Load Forecasting: A
Comparative Analysis and the Impact of the Covid-19 Pandemic on Model
Performance [0.0]
短期負荷予測(STLF)は、その信頼性、排出、コストの最適化に不可欠である。
この研究は、精度の予測と持続可能性のトレーニングに関して、Deep Learning (DL)アーキテクチャの比較研究を行う。
ケーススタディは、ポルトガルの全国15分解像度ネットロードタイムシリーズの日頭予測に焦点を当てている。
論文 参考訳(メタデータ) (2023-02-25T10:08:23Z) - Latent Diffusion Energy-Based Model for Interpretable Text Modeling [104.85356157724372]
本稿では,拡散モデルと潜時空間ESMの共生を変動学習フレームワークで導入する。
我々は,学習した潜在空間の品質を向上させるために,情報ボトルネックと合わせて幾何学的クラスタリングに基づく正規化を開発する。
論文 参考訳(メタデータ) (2022-06-13T03:41:31Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。