Tuning-free Universally-Supervised Semantic Segmentation
- URL: http://arxiv.org/abs/2405.14294v1
- Date: Thu, 23 May 2024 08:13:52 GMT
- Title: Tuning-free Universally-Supervised Semantic Segmentation
- Authors: Xiaobo Yang, Xiaojin Gong,
- Abstract summary: This work presents a tuning-free semantic segmentation framework based on classifying SAM masks by CLIP.
We propose discrimination-bias aligned CLIP to closely align mask and text embedding, offering an overhead-free performance gain.
We then construct a global-local consistent to classify SAM masks, which reveals the intrinsic structure of high-quality embeddings.
- Score: 5.455525100072623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a tuning-free semantic segmentation framework based on classifying SAM masks by CLIP, which is universally applicable to various types of supervision. Initially, we utilize CLIP's zero-shot classification ability to generate pseudo-labels or perform open-vocabulary segmentation. However, the misalignment between mask and CLIP text embeddings leads to suboptimal results. To address this issue, we propose discrimination-bias aligned CLIP to closely align mask and text embedding, offering an overhead-free performance gain. We then construct a global-local consistent classifier to classify SAM masks, which reveals the intrinsic structure of high-quality embeddings produced by DBA-CLIP and demonstrates robustness against noisy pseudo-labels. Extensive experiments validate the efficiency and effectiveness of our method, and we achieve state-of-the-art (SOTA) or competitive performance across various datasets and supervision types.
Related papers
- Bridge the Points: Graph-based Few-shot Segment Anything Semantically [79.1519244940518]
Recent advancements in pre-training techniques have enhanced the capabilities of vision foundation models.
Recent studies extend the SAM to Few-shot Semantic segmentation (FSS)
We propose a simple yet effective approach based on graph analysis.
arXiv Detail & Related papers (2024-10-09T15:02:28Z) - PosSAM: Panoptic Open-vocabulary Segment Anything [58.72494640363136]
PosSAM is an open-vocabulary panoptic segmentation model that unifies the strengths of the Segment Anything Model (SAM) with the vision-native CLIP model in an end-to-end framework.
We introduce a Mask-Aware Selective Ensembling (MASE) algorithm that adaptively enhances the quality of generated masks and boosts the performance of open-vocabulary classification during inference for each image.
arXiv Detail & Related papers (2024-03-14T17:55:03Z) - OMH: Structured Sparsity via Optimally Matched Hierarchy for Unsupervised Semantic Segmentation [69.37484603556307]
Un Semantic segmenting (USS) involves segmenting images without relying on predefined labels.
We introduce a novel approach called Optimally Matched Hierarchy (OMH) to simultaneously address the above issues.
Our OMH yields better unsupervised segmentation performance compared to existing USS methods.
arXiv Detail & Related papers (2024-03-11T09:46:41Z) - ClipSAM: CLIP and SAM Collaboration for Zero-Shot Anomaly Segmentation [5.376142948115328]
We propose a CLIP and SAM collaboration framework called ClipSAM for ZSAS.
The insight behind ClipSAM is to employ CLIP's semantic understanding capability for anomaly localization and rough segmentation.
In details, we introduce a crucial Unified Multi-scale Cross-modal Interaction (UMCI) module for interacting with visual features.
arXiv Detail & Related papers (2024-01-23T11:20:03Z) - TagCLIP: A Local-to-Global Framework to Enhance Open-Vocabulary
Multi-Label Classification of CLIP Without Training [29.431698321195814]
Contrastive Language-Image Pre-training (CLIP) has demonstrated impressive capabilities in open-vocabulary classification.
CLIP shows poor performance on multi-label datasets because the global feature tends to be dominated by the most prominent class.
We propose a local-to-global framework to obtain image tags.
arXiv Detail & Related papers (2023-12-20T08:15:40Z) - Open-Vocabulary Segmentation with Semantic-Assisted Calibration [73.39366775301382]
We study open-vocabulary segmentation (OVS) through calibrating in-vocabulary and domain-biased embedding space with contextual prior of CLIP.
We present a Semantic-assisted CAlibration Network (SCAN) to achieve state-of-the-art performance on open-vocabulary segmentation benchmarks.
arXiv Detail & Related papers (2023-12-07T07:00:09Z) - CLIP Is Also a Good Teacher: A New Learning Framework for Inductive
Zero-shot Semantic Segmentation [6.181169909576527]
Generalized Zero-shot Semantic aims to segment both seen and unseen categories only under the supervision of the seen ones.
Existing methods adopt the large-scale Vision Language Models (VLMs) which obtain outstanding zero-shot performance.
We propose CLIP-ZSS (Zero-shot Semantic), a training framework that enables any image encoder designed for closed-set segmentation applied in zero-shot and open-vocabulary tasks.
arXiv Detail & Related papers (2023-10-03T09:33:47Z) - CLIP is Also an Efficient Segmenter: A Text-Driven Approach for Weakly
Supervised Semantic Segmentation [19.208559353954833]
This paper explores the potential of Contrastive Language-Image Pre-training models (CLIP) to localize different categories with only image-level labels.
To efficiently generate high-quality segmentation masks from CLIP, we propose a novel WSSS framework called CLIP-ES.
arXiv Detail & Related papers (2022-12-16T06:23:59Z) - DenseCLIP: Extract Free Dense Labels from CLIP [130.3830819077699]
Contrastive Language-Image Pre-training (CLIP) has made a remarkable breakthrough in open-vocabulary zero-shot image recognition.
DenseCLIP+ surpasses SOTA transductive zero-shot semantic segmentation methods by large margins.
Our finding suggests that DenseCLIP can serve as a new reliable source of supervision for dense prediction tasks.
arXiv Detail & Related papers (2021-12-02T09:23:01Z) - Learning Class-Agnostic Pseudo Mask Generation for Box-Supervised
Semantic Segmentation [156.9155100983315]
We seek for a more accurate learning-based class-agnostic pseudo mask generator tailored to box-supervised semantic segmentation.
Our method can further close the performance gap between box-supervised and fully-supervised models.
arXiv Detail & Related papers (2021-03-09T14:54:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.