Smooth Pseudo-Labeling
- URL: http://arxiv.org/abs/2405.14313v1
- Date: Thu, 23 May 2024 08:33:07 GMT
- Title: Smooth Pseudo-Labeling
- Authors: Nikolaos Karaliolios, Hervé Le Borgne, Florian Chabot,
- Abstract summary: A fruitful method in Semi-Supervised Learning (SSL) is Pseudo-Labeling (PL)
PL suffers from the important drawback that the associated loss function has discontinuities in its derivatives, which cause instabilities in performance when labels are very scarce.
We introduce a new benchmark, where labeled images are selected randomly from the whole dataset, without imposing representation of each class proportional to its frequency in the dataset.
- Score: 4.1569253650826195
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Semi-Supervised Learning (SSL) seeks to leverage large amounts of non-annotated data along with the smallest amount possible of annotated data in order to achieve the same level of performance as if all data were annotated. A fruitful method in SSL is Pseudo-Labeling (PL), which, however, suffers from the important drawback that the associated loss function has discontinuities in its derivatives, which cause instabilities in performance when labels are very scarce. In the present work, we address this drawback with the introduction of a Smooth Pseudo-Labeling (SP L) loss function. It consists in adding a multiplicative factor in the loss function that smooths out the discontinuities in the derivative due to thresholding. In our experiments, we test our improvements on FixMatch and show that it significantly improves the performance in the regime of scarce labels, without addition of any modules, hyperparameters, or computational overhead. In the more stable regime of abundant labels, performance remains at the same level. Robustness with respect to variation of hyperparameters and training parameters is also significantly improved. Moreover, we introduce a new benchmark, where labeled images are selected randomly from the whole dataset, without imposing representation of each class proportional to its frequency in the dataset. We see that the smooth version of FixMatch does appear to perform better than the original, non-smooth implementation. However, more importantly, we notice that both implementations do not necessarily see their performance improve when labeled images are added, an important issue in the design of SSL algorithms that should be addressed so that Active Learning algorithms become more reliable and explainable.
Related papers
- Calibrated Language Models and How to Find Them with Label Smoothing [4.038344945496787]
Large language models (LLMs) can behave as more powerful interactive agents through improved instruction-following ability.<n>Recent advances in natural language processing (NLP) have opened up greater opportunities to enable fine-tuned large language models (LLMs) to behave as more powerful interactive agents through improved instruction-following ability.<n> understanding how this impacts confidence calibration for reliable model output has not been researched in full.
arXiv Detail & Related papers (2025-08-01T02:12:20Z) - SeMi: When Imbalanced Semi-Supervised Learning Meets Mining Hard Examples [54.760757107700755]
Semi-Supervised Learning (SSL) can leverage abundant unlabeled data to boost model performance.
The class-imbalanced data distribution in real-world scenarios poses great challenges to SSL, resulting in performance degradation.
We propose a method that enhances the performance of Imbalanced Semi-Supervised Learning by Mining Hard Examples (SeMi)
arXiv Detail & Related papers (2025-01-10T14:35:16Z) - GUESS: Generative Uncertainty Ensemble for Self Supervision [6.963971634605796]
Self-supervised learning (SSL) frameworks consist of pretext task, and loss function aiming to learn useful general features from unlabeled data.
Inattentive or deterministic enforcement of the invariance to any kind of data augmentation is generally not only inefficient, but also potentially detrimental to performance on the downstream tasks.
We introduce a new approach GUESS, a pseudo-whitening framework, composed of controlled uncertainty injection, a new architecture, and a new loss function.
arXiv Detail & Related papers (2024-12-03T22:59:23Z) - An Embedding is Worth a Thousand Noisy Labels [0.11999555634662634]
We propose WANN, a weighted Adaptive Nearest Neighbor approach to address label noise.
We show WANN outperforms reference methods on diverse datasets of varying size and under various noise types and severities.
Our approach, emphasizing efficiency and explainability, emerges as a simple, robust solution to overcome the inherent limitations of deep neural network training.
arXiv Detail & Related papers (2024-08-26T15:32:31Z) - ERASE: Error-Resilient Representation Learning on Graphs for Label Noise
Tolerance [53.73316938815873]
We propose a method called ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE) to learn representations with error tolerance.
ERASE combines prototype pseudo-labels with propagated denoised labels and updates representations with error resilience.
Our method can outperform multiple baselines with clear margins in broad noise levels and enjoy great scalability.
arXiv Detail & Related papers (2023-12-13T17:59:07Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
This paper revisits the popular pseudo-labeling methods via a unified sample weighting formulation.
We propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training.
In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.
arXiv Detail & Related papers (2023-01-26T03:53:25Z) - Complementing Semi-Supervised Learning with Uncertainty Quantification [6.612035830987296]
We propose a novel unsupervised uncertainty-aware objective that relies on aleatoric and epistemic uncertainty quantification.
Our results outperform the state-of-the-art results on complex datasets such as CIFAR-100 and Mini-ImageNet.
arXiv Detail & Related papers (2022-07-22T00:15:02Z) - The Role of Pseudo-labels in Self-training Linear Classifiers on High-dimensional Gaussian Mixture Data [3.1274367448459253]
Self-training (ST) is a simple yet effective semi-supervised learning method.
We show that ST improves generalization in different ways depending on the number of iterations.
arXiv Detail & Related papers (2022-05-16T15:02:44Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) is a general SSL approach that does not have this constraint but performs relatively poorly in its original formulation.
We argue that PL underperforms due to the erroneous high confidence predictions from poorly calibrated models.
We propose an uncertainty-aware pseudo-label selection (UPS) framework which improves pseudo labeling accuracy by drastically reducing the amount of noise encountered in the training process.
arXiv Detail & Related papers (2021-01-15T23:29:57Z) - Boosting the Performance of Semi-Supervised Learning with Unsupervised
Clustering [10.033658645311188]
We show that ignoring labels altogether for whole epochs intermittently during training can significantly improve performance in the small sample regime.
We demonstrate our method's efficacy in boosting several state-of-the-art SSL algorithms.
arXiv Detail & Related papers (2020-12-01T14:19:14Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
We present a re-design of pseudo-labeling to generate structured pseudo labels for training with unlabeled or weakly-labeled data.
We demonstrate the effectiveness of the proposed pseudo-labeling strategy in both low-data and high-data regimes.
arXiv Detail & Related papers (2020-10-19T17:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.