Doubly-Dynamic ISAC Precoding for Vehicular Networks: A Constrained Deep Reinforcement Learning (CDRL) Approach
- URL: http://arxiv.org/abs/2405.14347v3
- Date: Fri, 23 Aug 2024 15:31:28 GMT
- Title: Doubly-Dynamic ISAC Precoding for Vehicular Networks: A Constrained Deep Reinforcement Learning (CDRL) Approach
- Authors: Zonghui Yang, Shijian Gao, Xiang Cheng,
- Abstract summary: Integrated sensing and communication (ISAC) technology is essential for supporting vehicular networks.
The communication channel in this scenario exhibits time variations, and the potential targets may move rapidly, resulting in double dynamics.
We propose using constrained deep reinforcement learning to facilitate dynamic updates to the ISAC precoder.
- Score: 11.770137653756697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integrated sensing and communication (ISAC) technology is essential for supporting vehicular networks. However, the communication channel in this scenario exhibits time variations, and the potential targets may move rapidly, resulting in double dynamics. This nature poses a challenge for real-time precoder design. While optimization-based solutions are widely researched, they are complex and heavily rely on perfect channel-related information, which is impractical in double dynamics. To address this challenge, we propose using constrained deep reinforcement learning to facilitate dynamic updates to the ISAC precoder. Additionally, the primal dual-deep deterministic policy gradient and Wolpertinger architecture are tailored to efficiently train the algorithm under complex constraints and varying numbers of users. The proposed scheme not only adapts to the dynamics based on observations but also leverages environmental information to enhance performance and reduce complexity. Its superiority over existing candidates has been validated through experiments.
Related papers
- Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI-generated content can organize collaborative Mobile AIGC Service Providers (MASPs) at network edges to provide ubiquitous and customized content for resource-constrained users.
Such a paradigm faces two significant challenges: 1) raw prompts often lead to poor generation quality due to users' lack of experience with specific AIGC models, and 2) static service provisioning fails to efficiently utilize computational and communication resources.
We develop an interactive prompt engineering mechanism that leverages a Large Language Model (LLM) to generate customized prompt corpora and employs Inverse Reinforcement Learning (IRL) for policy imitation.
arXiv Detail & Related papers (2025-02-17T03:05:20Z) - Synesthesia of Machines (SoM)-Enhanced ISAC Precoding for Vehicular Networks with Double Dynamics [15.847713094328286]
Integrated sensing and communication (ISAC) technology is vital for vehicular networks.
Time-varying communication channels and rapid movement of targets present significant challenges for real-time precoding design.
We propose a synesthesia of machine (SoM)-enhanced precoding paradigm that leverages modalities such as positioning and channel information to adapt to these dynamics.
arXiv Detail & Related papers (2024-08-24T10:35:10Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - RLEEGNet: Integrating Brain-Computer Interfaces with Adaptive AI for
Intuitive Responsiveness and High-Accuracy Motor Imagery Classification [0.0]
We introduce a framework that leverages Reinforcement Learning with Deep Q-Networks (DQN) for classification tasks.
We present a preprocessing technique for multiclass motor imagery (MI) classification in a One-Versus-The-Rest (OVR) manner.
The integration of DQN with a 1D-CNN-LSTM architecture optimize the decision-making process in real-time.
arXiv Detail & Related papers (2024-02-09T02:03:13Z) - Digital Twin-Enhanced Deep Reinforcement Learning for Resource
Management in Networks Slicing [46.65030115953947]
We propose a framework consisting of a digital twin and reinforcement learning agents.
Specifically, we propose to use the historical data and the neural networks to build a digital twin model to simulate the state variation law of the real environment.
We also extend the framework to offline reinforcement learning, where solutions can be used to obtain intelligent decisions based solely on historical data.
arXiv Detail & Related papers (2023-11-28T15:25:14Z) - Efficient Encoder-Decoder and Dual-Path Conformer for Comprehensive
Feature Learning in Speech Enhancement [0.2538209532048866]
This paper proposes a time-frequency (T-F) domain speech enhancement network (DPCFCS-Net)
It incorporates improved densely connected blocks, dual-path modules, convolution-augmented transformers (conformers), channel attention, and spatial attention.
Compared with previous models, our proposed model has a more efficient encoder-decoder and can learn comprehensive features.
arXiv Detail & Related papers (2023-06-09T12:52:01Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
A digital twin (DT) leverages a virtual representation of the physical world, along with communication (e.g., 6G), computing, and artificial intelligence (AI) technologies to enable many connected intelligence services.
Wireless systems can exploit the paradigm of semantic communication (SC) for facilitating informed decision-making under strict communication constraints.
A novel framework called causal semantic communication (CSC) is proposed for DT-based wireless systems.
arXiv Detail & Related papers (2023-04-25T00:15:00Z) - Adapting to Dynamic LEO-B5G Systems: Meta-Critic Learning Based
Efficient Resource Scheduling [38.733584547351796]
We address two practical issues for an over-loaded LEO-terrestrial system.
The first challenge is how to efficiently schedule resources to serve the massive number of connected users.
The second challenge is how to make the algorithmic solution more resilient in adapting to dynamic wireless environments.
arXiv Detail & Related papers (2021-10-13T15:21:38Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Dynamic Slimmable Network [105.74546828182834]
We develop a dynamic network slimming regime named Dynamic Slimmable Network (DS-Net)
Our DS-Net is empowered with the ability of dynamic inference by the proposed double-headed dynamic gate.
It consistently outperforms its static counterparts as well as state-of-the-art static and dynamic model compression methods.
arXiv Detail & Related papers (2021-03-24T15:25:20Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.