論文の概要: stl2vec: Semantic and Interpretable Vector Representation of Temporal Logic
- arxiv url: http://arxiv.org/abs/2405.14389v1
- Date: Thu, 23 May 2024 10:04:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 15:54:01.878853
- Title: stl2vec: Semantic and Interpretable Vector Representation of Temporal Logic
- Title(参考訳): stl2vec:時間論理の意味的・解釈的ベクトル表現
- Authors: Gaia Saveri, Laura Nenzi, Luca Bortolussi, Jan Křetínský,
- Abstract要約: 論理式を意味的に基底としたベクトル表現(機能埋め込み)を提案する。
我々はいくつかの望ましい性質を持つ公式の連続的な埋め込みを計算する。
本稿では,学習モデル検査とニューロシンボリック・フレームワークの2つの課題において,アプローチの有効性を実証する。
- 参考スコア(独自算出の注目度): 0.5956301166481089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating symbolic knowledge and data-driven learning algorithms is a longstanding challenge in Artificial Intelligence. Despite the recognized importance of this task, a notable gap exists due to the discreteness of symbolic representations and the continuous nature of machine-learning computations. One of the desired bridges between these two worlds would be to define semantically grounded vector representation (feature embedding) of logic formulae, thus enabling to perform continuous learning and optimization in the semantic space of formulae. We tackle this goal for knowledge expressed in Signal Temporal Logic (STL) and devise a method to compute continuous embeddings of formulae with several desirable properties: the embedding (i) is finite-dimensional, (ii) faithfully reflects the semantics of the formulae, (iii) does not require any learning but instead is defined from basic principles, (iv) is interpretable. Another significant contribution lies in demonstrating the efficacy of the approach in two tasks: learning model checking, where we predict the probability of requirements being satisfied in stochastic processes; and integrating the embeddings into a neuro-symbolic framework, to constrain the output of a deep-learning generative model to comply to a given logical specification.
- Abstract(参考訳): 記号的知識とデータ駆動学習アルゴリズムを統合することは、人工知能における長年の課題である。
このタスクの重要性は認識されているが、記号表現の離散性と機械学習計算の連続性により、顕著なギャップが存在する。
これら2つの世界の橋梁の1つは、論理公式のセマンティックグラウンドドベクター表現(機能埋め込み)を定義することであり、それによって論理式のセマンティック空間において連続的な学習と最適化を行うことができる。
Signal Temporal Logic (STL) で表現された知識のためのこの目標に取り組み、いくつかの望ましい性質を持つ公式の連続的な埋め込みを計算する方法を考案する。
(i) は有限次元である
(二)式の意味を忠実に反映する。
(iii)学習を一切必要とせず、基本原則から定義する。
(iv)は解釈可能である。
もうひとつの重要な貢献は、2つのタスクにおけるアプローチの有効性の実証である: 学習モデルチェック: 確率的プロセスで満たされる要求の確率を予測し、その埋め込みをニューロシンボリックなフレームワークに統合し、与えられた論理的仕様に従うためにディープラーニング生成モデルの出力を制限する。
関連論文リスト
- Semantic Objective Functions: A distribution-aware method for adding logical constraints in deep learning [4.854297874710511]
制約付き学習と知識蒸留技術は有望な結果を示した。
本稿では,機械学習モデルに知識を付加した論理的制約を組み込むロスベース手法を提案する。
本手法は,論理的制約のある分類タスクを含む,様々な学習課題において評価する。
論文 参考訳(メタデータ) (2024-05-03T19:21:47Z) - TLINet: Differentiable Neural Network Temporal Logic Inference [10.36033062385604]
本稿では,STL式を学習するニューラルネットワークシンボリックフレームワークであるTLINetを紹介する。
従来の手法とは対照的に,時間論理に基づく勾配法に特化して設計された最大演算子の近似法を導入する。
我々のフレームワークは、構造だけでなく、STL公式のパラメータも学習し、演算子と様々な論理構造の柔軟な組み合わせを可能にします。
論文 参考訳(メタデータ) (2024-05-03T16:38:14Z) - Discrete, compositional, and symbolic representations through attractor
dynamics [61.58042831010077]
記号空間におけるインポーティング構造は、リッチな感覚入力のアトラクタ支持表現空間において構成性をもたらすことを示す。
我々のモデルは、意識経験において重要な役割を果たしていると考えられる情報のボトルネックの過程を示す。
論文 参考訳(メタデータ) (2023-10-03T05:40:56Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - VAEL: Bridging Variational Autoencoders and Probabilistic Logic
Programming [3.759936323189418]
本稿では、可変オートエンコーダ(VAE)と確率論的論理(L)プログラミングの推論能力を統合するニューラルシンボリック生成モデルVAELを提案する。
論文 参考訳(メタデータ) (2022-02-07T10:16:53Z) - Human-interpretable model explainability on high-dimensional data [8.574682463936007]
2つのモジュールからなる高次元データに対する人間解釈可能な説明可能性のためのフレームワークを提案する。
まず、データの生の次元性を減らし、人間の解釈可能性を確保するために、意味的に意味のある潜在表現を適用する。
第2に、モデルに依存しないこれらの潜在的特徴を扱うために、Shapleyパラダイムを適用し、理論的に制御され、計算的に抽出可能なモデル説明をもたらす。
論文 参考訳(メタデータ) (2020-10-14T20:06:28Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z) - Symbolic Learning and Reasoning with Noisy Data for Probabilistic
Anchoring [19.771392829416992]
ボトムアップオブジェクトアンカーに基づくセマンティックワールドモデリング手法を提案する。
我々は、マルチモーダル確率分布を扱うためにアンカーの定義を拡張した。
我々は統計的リレーショナル・ラーニングを用いて、アンカーリング・フレームワークが記号的知識を学習できるようにする。
論文 参考訳(メタデータ) (2020-02-24T16:58:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。