SLIFER: Investigating Performance and Robustness of Malware Detection Pipelines
- URL: http://arxiv.org/abs/2405.14478v2
- Date: Wed, 5 Jun 2024 07:56:24 GMT
- Title: SLIFER: Investigating Performance and Robustness of Malware Detection Pipelines
- Authors: Andrea Ponte, Dmitrijs Trizna, Luca Demetrio, Battista Biggio, Ivan Tesfai Ogbu, Fabio Roli,
- Abstract summary: academia focuses on combining static and dynamic analysis within a single or ensemble of models.
We propose SLIFER, a novel Windows malware detection pipeline sequentially leveraging both static and dynamic analysis.
- Score: 12.940071285118451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a result of decades of research, Windows malware detection is approached through a plethora of techniques. However, there is an ongoing mismatch between academia -- which pursues an optimal performances in terms of detection rate and low false alarms -- and the requirements of real-world scenarios. In particular, academia focuses on combining static and dynamic analysis within a single or ensemble of models, falling into several pitfalls like (i) firing dynamic analysis without considering the computational burden it requires; (ii) discarding impossible-to-analyse samples; and (iii) analysing robustness against adversarial attacks without considering that malware detectors are complemented with more non-machine-learning components. Thus, in this paper we propose SLIFER, a novel Windows malware detection pipeline sequentially leveraging both static and dynamic analysis, interrupting computations as soon as one module triggers an alarm, requiring dynamic analysis only when needed. Contrary to the state of the art, we investigate how to deal with samples resistance to analysis, showing how much they impact performances, concluding that it is better to flag them as legitimate to not drastically increase false alarms. Lastly, we perform a robustness evaluation of SLIFER leveraging content-injections attacks, and we show that, counter-intuitively, attacks are blocked more by YARA rules than dynamic analysis due to byte artifacts created while optimizing the adversarial strategy.
Related papers
- Humanizing Machine-Generated Content: Evading AI-Text Detection through Adversarial Attack [24.954755569786396]
We propose a framework for a broader class of adversarial attacks, designed to perform minor perturbations in machine-generated content to evade detection.
We consider two attack settings: white-box and black-box, and employ adversarial learning in dynamic scenarios to assess the potential enhancement of the current detection model's robustness.
The empirical results reveal that the current detection models can be compromised in as little as 10 seconds, leading to the misclassification of machine-generated text as human-written content.
arXiv Detail & Related papers (2024-04-02T12:49:22Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
Attack Graph (AG) represents the best-suited solution to support cyber risk assessment for multi-step attacks on computer networks.
Current solutions propose to address the generation problem from the algorithmic perspective and postulate the analysis only after the generation is complete.
This paper rethinks the classic AG analysis through a novel workflow in which the analyst can query the system anytime.
arXiv Detail & Related papers (2023-12-27T10:44:58Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - A Minimax Approach Against Multi-Armed Adversarial Attacks Detection [31.971443221041174]
Multi-armed adversarial attacks have been shown to be highly successful in fooling state-of-the-art detectors.
We propose a solution that aggregates the soft-probability outputs of multiple pre-trained detectors according to a minimax approach.
We show that our aggregation consistently outperforms individual state-of-the-art detectors against multi-armed adversarial attacks.
arXiv Detail & Related papers (2023-02-04T18:21:22Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - A Comparison of Static, Dynamic, and Hybrid Analysis for Malware
Detection [4.759823735082844]
We compare malware detection techniques based on static, dynamic, and hybrid analysis.
In our experiments, a fully dynamic approach generally yields the best detection rates.
arXiv Detail & Related papers (2022-03-13T15:52:31Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Towards an Automated Pipeline for Detecting and Classifying Malware
through Machine Learning [0.0]
We propose a malware taxonomic classification pipeline able to classify Windows Portable Executable files (PEs)
Given an input PE sample, it is first classified as either malicious or benign.
If malicious, the pipeline further analyzes it in order to establish its threat type, family, and behavior(s)
arXiv Detail & Related papers (2021-06-10T10:07:50Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.