論文の概要: A Comprehensive Overview of Large Language Models (LLMs) for Cyber Defences: Opportunities and Directions
- arxiv url: http://arxiv.org/abs/2405.14487v1
- Date: Thu, 23 May 2024 12:19:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 13:07:39.447078
- Title: A Comprehensive Overview of Large Language Models (LLMs) for Cyber Defences: Opportunities and Directions
- Title(参考訳): サイバー防衛のための大規模言語モデル(LLM)の概要--可能性と方向性
- Authors: Mohammed Hassanin, Nour Moustafa,
- Abstract要約: 最近のLLM(Large Language Models)の進歩は、データ中心のアプリケーション分野で大きな成功を収めている。
サイバー防衛部門におけるLSMの最近の活動の概要について概説する。
トランスフォーマー, 事前学習トランスフォーマー, GPTからのLCMの進行に関する基本的な概念を述べる。
- 参考スコア(独自算出の注目度): 12.044950530380563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent progression of Large Language Models (LLMs) has witnessed great success in the fields of data-centric applications. LLMs trained on massive textual datasets showed ability to encode not only context but also ability to provide powerful comprehension to downstream tasks. Interestingly, Generative Pre-trained Transformers utilised this ability to bring AI a step closer to human being replacement in at least datacentric applications. Such power can be leveraged to identify anomalies of cyber threats, enhance incident response, and automate routine security operations. We provide an overview for the recent activities of LLMs in cyber defence sections, as well as categorization for the cyber defence sections such as threat intelligence, vulnerability assessment, network security, privacy preserving, awareness and training, automation, and ethical guidelines. Fundamental concepts of the progression of LLMs from Transformers, Pre-trained Transformers, and GPT is presented. Next, the recent works of each section is surveyed with the related strengths and weaknesses. A special section about the challenges and directions of LLMs in cyber security is provided. Finally, possible future research directions for benefiting from LLMs in cyber security is discussed.
- Abstract(参考訳): 最近のLLM(Large Language Models)の進歩は、データ中心のアプリケーション分野で大きな成功を収めている。
大量のテキストデータセットに基づいてトレーニングされたLLMは、コンテキストだけでなく、下流のタスクに強力な理解を提供する能力も示す。
興味深いことに、Generative Pre-trained Transformersはこの能力を利用して、少なくともデータ中心のアプリケーションにおいて、AIが置き換えられている人間に一歩近づいた。
このようなパワーは、サイバー脅威の異常を特定し、インシデント対応を強化し、定期的なセキュリティ操作を自動化するために利用することができる。
サイバー防衛部門におけるLCMの最近の活動の概要と、脅威情報、脆弱性評価、ネットワークセキュリティ、プライバシ保護、意識とトレーニング、自動化、倫理ガイドラインなどのサイバー防衛部門における分類について概説する。
トランスフォーマー, 事前学習トランスフォーマー, GPTからのLCMの進行に関する基本的な概念を述べる。
次に、各セクションの最近の研究を、関連する強みと弱みで調査する。
サイバーセキュリティにおけるLLMの課題と方向性に関する特別セクションが提供される。
最後に,サイバーセキュリティにおけるLCMのメリットを活かすための今後の研究の方向性について論じる。
関連論文リスト
- Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - Mitigating Backdoor Threats to Large Language Models: Advancement and Challenges [46.032173498399885]
大規模言語モデル(LLM)は、Web検索、ヘルスケア、ソフトウェア開発など、さまざまな領域に大きな影響を与えている。
これらのモデルがスケールするにつれて、サイバーセキュリティのリスク、特にバックドア攻撃に対する脆弱性が高まる。
論文 参考訳(メタデータ) (2024-09-30T06:31:36Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
LVLM(Large Vision-Language Models)は、多モーダルな理解と推論タスクにまたがる顕著な能力を示す。
LVLMの脆弱性は比較的過小評価されており、日々の使用において潜在的なセキュリティリスクを生じさせる。
本稿では,既存のLVLM攻撃の様々な形態について概説する。
論文 参考訳(メタデータ) (2024-07-10T06:57:58Z) - Generative AI and Large Language Models for Cyber Security: All Insights You Need [0.06597195879147556]
本稿では,ジェネレーティブAIとLarge Language Models(LLMs)によるサイバーセキュリティの将来を概観する。
ハードウェア設計のセキュリティ、侵入検知、ソフトウェアエンジニアリング、設計検証、サイバー脅威インテリジェンス、マルウェア検出、フィッシング検出など、さまざまな領域にわたるLCMアプリケーションを探索する。
GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, LLaMA などのモデルの発展に焦点を当て, LLM の進化とその現状について概説する。
論文 参考訳(メタデータ) (2024-05-21T13:02:27Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
サイバーセキュリティ(LLM4Security)における大規模言語モデルの適用に関する文献の総合的なレビューを行う。
LLMは、脆弱性検出、マルウェア分析、ネットワーク侵入検出、フィッシング検出など、幅広いサイバーセキュリティタスクに応用されている。
第3に、細調整、転送学習、ドメイン固有の事前トレーニングなど、特定のサイバーセキュリティドメインにLLMを適用するための有望なテクニックをいくつか特定する。
論文 参考訳(メタデータ) (2024-05-08T02:09:17Z) - SEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence [27.550484938124193]
本稿では,サイバーセキュリティのインシデント分析と応答能力をベンチマークし,評価し,改善するためのフレームワークを提案する。
サイバーセキュリティのWebサイトから、サイバーセキュリティの生テキストをクロールすることによって、高品質なバイリンガル命令コーパスを作成します。
命令データセットSEvenLLM-Instructは、マルチタスク学習目的のサイバーセキュリティLLMのトレーニングに使用される。
論文 参考訳(メタデータ) (2024-05-06T13:17:43Z) - Large language models in 6G security: challenges and opportunities [5.073128025996496]
我々は,潜在的敵の立場から,Large Language Models(LLMs)のセキュリティ面に注目した。
これには包括的脅威分類の開発が含まれ、様々な敵の行動を分類する。
また、我々の研究は、防衛チーム(ブルーチームとしても知られる)によるサイバーセキュリティ活動にLLMがどのように統合されるかに焦点を当てます。
論文 参考訳(メタデータ) (2024-03-18T20:39:34Z) - Highlighting the Safety Concerns of Deploying LLMs/VLMs in Robotics [54.57914943017522]
本稿では,大規模言語モデル (LLMs) と視覚言語モデル (VLMs) をロボティクスアプリケーションに統合する際のロバスト性と安全性に関する重要な課題を強調する。
論文 参考訳(メタデータ) (2024-02-15T22:01:45Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。