論文の概要: Large language models in 6G security: challenges and opportunities
- arxiv url: http://arxiv.org/abs/2403.12239v1
- Date: Mon, 18 Mar 2024 20:39:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 18:12:11.299415
- Title: Large language models in 6G security: challenges and opportunities
- Title(参考訳): 6Gセキュリティにおける大規模言語モデル - 課題と機会
- Authors: Tri Nguyen, Huong Nguyen, Ahmad Ijaz, Saeid Sheikhi, Athanasios V. Vasilakos, Panos Kostakos,
- Abstract要約: 我々は,潜在的敵の立場から,Large Language Models(LLMs)のセキュリティ面に注目した。
これには包括的脅威分類の開発が含まれ、様々な敵の行動を分類する。
また、我々の研究は、防衛チーム(ブルーチームとしても知られる)によるサイバーセキュリティ活動にLLMがどのように統合されるかに焦点を当てます。
- 参考スコア(独自算出の注目度): 5.073128025996496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid integration of Generative AI (GenAI) and Large Language Models (LLMs) in sectors such as education and healthcare have marked a significant advancement in technology. However, this growth has also led to a largely unexplored aspect: their security vulnerabilities. As the ecosystem that includes both offline and online models, various tools, browser plugins, and third-party applications continues to expand, it significantly widens the attack surface, thereby escalating the potential for security breaches. These expansions in the 6G and beyond landscape provide new avenues for adversaries to manipulate LLMs for malicious purposes. We focus on the security aspects of LLMs from the viewpoint of potential adversaries. We aim to dissect their objectives and methodologies, providing an in-depth analysis of known security weaknesses. This will include the development of a comprehensive threat taxonomy, categorizing various adversary behaviors. Also, our research will concentrate on how LLMs can be integrated into cybersecurity efforts by defense teams, also known as blue teams. We will explore the potential synergy between LLMs and blockchain technology, and how this combination could lead to the development of next-generation, fully autonomous security solutions. This approach aims to establish a unified cybersecurity strategy across the entire computing continuum, enhancing overall digital security infrastructure.
- Abstract(参考訳): 教育や医療などの分野におけるジェネレーティブAI(GenAI)とLarge Language Models(LLMs)の急速な統合は、テクノロジーの大幅な進歩を象徴している。
しかし、この成長は、ほとんど未調査の側面、すなわちセキュリティ上の脆弱性につながっている。
オフラインおよびオンラインモデル、さまざまなツール、ブラウザプラグイン、サードパーティアプリケーションを含むエコシステムが拡大を続けるにつれ、攻撃面が大幅に拡大し、セキュリティ侵害の可能性も拡大する。
6Gやランドスケープを超えて拡張されたこれらの拡張は、敵が悪意ある目的のためにLSMを操作するための新たな道を提供する。
我々は,LLMのセキュリティ面に,潜在的な敵の立場から焦点をあてる。
我々は,その目的と方法論を解明し,既知のセキュリティの弱点を詳細に分析することを目的としている。
これには包括的脅威分類の開発が含まれ、様々な敵の行動を分類する。
また、我々の研究は、防衛チーム(ブルーチームとしても知られる)によるサイバーセキュリティ活動にLLMがどのように統合されるかに焦点を当てます。
LLMとブロックチェーン技術間のシナジーの可能性を探り、この組み合わせが次世代の完全自律型セキュリティソリューションの開発にどのように寄与するかを検討します。
このアプローチは、コンピュータ連続体全体にわたって統一されたサイバーセキュリティ戦略を確立することを目的としており、デジタルセキュリティインフラストラクチャ全体の強化を目的としている。
関連論文リスト
- Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - Enhancing Enterprise Security with Zero Trust Architecture [0.0]
Zero Trust Architecture (ZTA) は、現代のサイバーセキュリティに対する変革的なアプローチである。
ZTAは、ユーザ、デバイス、システムがデフォルトで信頼できないことを前提として、セキュリティパラダイムをシフトする。
本稿では、アイデンティティとアクセス管理(IAM)、マイクロセグメンテーション、継続的監視、行動分析など、ZTAの重要なコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-10-23T21:53:16Z) - Blockchain for Large Language Model Security and Safety: A Holistic Survey [2.385985842958366]
大規模な言語モデルのセキュリティと安全性を高めるためにブロックチェーン技術を活用する方法を評価することを目的としています。
本稿では,大規模言語モデル(BC4LLM)のためのブロックチェーンの新しい分類法を提案する。
私たちの分析には、BC4LLMのコンテキストにおけるセキュリティと安全性を規定する新しいフレームワークと定義が含まれています。
論文 参考訳(メタデータ) (2024-07-26T15:24:01Z) - A Comprehensive Overview of Large Language Models (LLMs) for Cyber Defences: Opportunities and Directions [12.044950530380563]
最近のLLM(Large Language Models)の進歩は、データ中心のアプリケーション分野で大きな成功を収めている。
サイバー防衛部門におけるLSMの最近の活動の概要について概説する。
トランスフォーマー, 事前学習トランスフォーマー, GPTからのLCMの進行に関する基本的な概念を述べる。
論文 参考訳(メタデータ) (2024-05-23T12:19:07Z) - Generative AI and Large Language Models for Cyber Security: All Insights You Need [0.06597195879147556]
本稿では,ジェネレーティブAIとLarge Language Models(LLMs)によるサイバーセキュリティの将来を概観する。
ハードウェア設計のセキュリティ、侵入検知、ソフトウェアエンジニアリング、設計検証、サイバー脅威インテリジェンス、マルウェア検出、フィッシング検出など、さまざまな領域にわたるLCMアプリケーションを探索する。
GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, LLaMA などのモデルの発展に焦点を当て, LLM の進化とその現状について概説する。
論文 参考訳(メタデータ) (2024-05-21T13:02:27Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Large Language Models in Cybersecurity: State-of-the-Art [4.990712773805833]
大規模言語モデル(LLM)の台頭は、私たちの知性の理解に革命をもたらした。
本研究は, サイバーセキュリティの領域におけるLLMの防衛的, 敵的応用の徹底的な評価を, 既存の文献を考察した。
論文 参考訳(メタデータ) (2024-01-30T16:55:25Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z) - Visual Adversarial Examples Jailbreak Aligned Large Language Models [66.53468356460365]
視覚入力の連続的かつ高次元的な性質は、敵対的攻撃に対する弱いリンクであることを示す。
我々は、視力統合されたLLMの安全ガードレールを回避するために、視覚的敵の例を利用する。
本研究は,マルチモダリティの追求に伴う敵のエスカレーションリスクを浮き彫りにする。
論文 参考訳(メタデータ) (2023-06-22T22:13:03Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。