論文の概要: Prediction of cancer dynamics under treatment using Bayesian neural networks: A simulated study
- arxiv url: http://arxiv.org/abs/2405.14508v1
- Date: Thu, 23 May 2024 12:47:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 15:15:02.577228
- Title: Prediction of cancer dynamics under treatment using Bayesian neural networks: A simulated study
- Title(参考訳): ベイジアンニューラルネットワークを用いた治療中の癌動態の予測:シミュレーションによる研究
- Authors: Even Moa Myklebust, Arnoldo Frigessi, Fredrik Schjesvold, Jasmine Foo, Kevin Leder, Alvaro Köhn-Luque,
- Abstract要約: 我々は,治療中の癌動態を予測するために,サブポピュレーション動態の階層的ベイズモデルを構築した。
多発性骨髄腫 (MM) では, 血清M蛋白が腫瘍負担の指標としてよく知られている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Predicting cancer dynamics under treatment is challenging due to high inter-patient heterogeneity, lack of predictive biomarkers, and sparse and noisy longitudinal data. Mathematical models can summarize cancer dynamics by a few interpretable parameters per patient. Machine learning methods can then be trained to predict the model parameters from baseline covariates, but do not account for uncertainty in the parameter estimates. Instead, hierarchical Bayesian modeling can model the relationship between baseline covariates to longitudinal measurements via mechanistic parameters while accounting for uncertainty in every part of the model. The mapping from baseline covariates to model parameters can be modeled in several ways. A linear mapping simplifies inference but fails to capture nonlinear covariate effects and scale poorly for interaction modeling when the number of covariates is large. In contrast, Bayesian neural networks can potentially discover interactions between covariates automatically, but at a substantial cost in computational complexity. In this work, we develop a hierarchical Bayesian model of subpopulation dynamics that uses baseline covariate information to predict cancer dynamics under treatment, inspired by cancer dynamics in multiple myeloma (MM), where serum M protein is a well-known proxy of tumor burden. As a working example, we apply the model to a simulated dataset and compare its ability to predict M protein trajectories to a model with linear covariate effects. Our results show that the Bayesian neural network covariate effect model predicts cancer dynamics more accurately than a linear covariate effect model when covariate interactions are present. The framework can also be applied to other types of cancer or other time series prediction problems that can be described with a parametric model.
- Abstract(参考訳): 治療中の癌動態の予測は、高い患者間不均一性、予測バイオマーカーの欠如、疎度でノイズの多い経時的データにより困難である。
数学的モデルは、がんのダイナミクスを患者ごとにいくつかの解釈可能なパラメータで要約することができる。
機械学習手法は、ベースラインの共変量からモデルパラメータを予測するために訓練されるが、パラメータ推定の不確実性は考慮しない。
その代わり、階層的ベイズモデリングは、モデルの各部分における不確実性を考慮しつつ、機械的パラメータによるベースライン共変量と縦断的測定との関係をモデル化することができる。
ベースライン共変量からモデルパラメータへのマッピングは、いくつかの方法でモデル化できる。
線形写像は推論を単純化するが、非線型共変量効果を捉えることができず、共変量数が大きければ相互作用のモデル化には不十分である。
対照的に、ベイジアンニューラルネットワークは共変量間の相互作用を自動的に発見することができるが、計算複雑性のかなりのコストがかかる。
本研究では,多発性骨髄腫 (MM) におけるがんの動態に触発されて, 治療中のがんの動態を予測するために, 塩基性共変量情報を用いたサブ集団動態の階層的ベイズモデルを構築した。
実例として、モデルをシミュレーションデータセットに適用し、Mタンパク質の軌道を線形共変量効果を持つモデルと比較する。
ベイズニューラルネットワーク共変量効果モデルでは,共変量相互作用が存在する場合の線形共変量効果モデルよりも,がんの動態を正確に予測できることがわかった。
このフレームワークは、パラメトリックモデルで記述できる他の種類のがんや他の時系列予測問題にも適用することができる。
関連論文リスト
- Modeling Long Sequences in Bladder Cancer Recurrence: A Comparative Evaluation of LSTM,Transformer,and Mamba [0.0]
本研究では,Cox比例ハザードモデルを用いて,時系列データを扱う深層学習モデルの利点を統合する。
LSTM-Coxモデルは、TransformerやMambaといった新しいモデルにまたがる、リカレントなデータ解析と特徴抽出のための堅牢で効率的な方法である。
論文 参考訳(メタデータ) (2024-05-28T18:38:15Z) - Kernel Cox partially linear regression: building predictive models for
cancer patients' survival [4.230753712933184]
我々はカーネルCox比例ハザード半パラメトリックモデルを構築し、モデルに適合する新しい正規化ニンジン化カーネルマシン(RegGKM)を提案する。
我々はカーネルマシン法を用いて生存率と予測値の複雑な関係を記述し、無関係なパラメトリックおよび非パラメトリック予測値を自動的に除去する。
この結果は、患者を異なる死亡リスクを持つグループに分類し、より良い臨床結果を得るために治療を促進するのに役立つ。
論文 参考訳(メタデータ) (2023-10-11T04:27:54Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Neural Frailty Machine: Beyond proportional hazard assumption in neural
survival regressions [30.018173329118184]
生存回帰のための強力なフレキシブルなニューラル・モデリング・フレームワークであるニューラル・フラリティ・マシン(NFM)を提案する。
2つの具体的なモデルは、ニューラル比例ハザードモデルと非ハザード回帰モデルを拡張する枠組みに基づいて導出される。
我々は,異なるスケールのベンチマークデータセットを6ドル以上で評価し,提案したNAMモデルは予測性能において最先端サバイバルモデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-03-18T08:15:15Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Unifying Epidemic Models with Mixtures [28.771032745045428]
新型コロナウイルスのパンデミックは、感染モデルに対する強固な理解の必要性を強調している。
本稿では2つのアプローチをブリッジする単純な混合モデルを提案する。
モデルは非機械的であるが、ネットワーク化されたSIRフレームワークに基づくプロセスの自然な結果として現れることを示す。
論文 参考訳(メタデータ) (2022-01-07T19:42:05Z) - Multi-modality fusion using canonical correlation analysis methods:
Application in breast cancer survival prediction from histology and genomics [16.537929113715432]
2つのモードの融合にカノニカル相関解析(CCA)とCCAのペナル化変種を用いて検討した。
モデルパラメータが既知の場合,両モードを併用した後進平均推定器は,潜時変動予測における単一モード後進推定器の任意の線形混合よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-27T21:18:01Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。