論文の概要: Subtle Biases Need Subtler Measures: Dual Metrics for Evaluating Representative and Affinity Bias in Large Language Models
- arxiv url: http://arxiv.org/abs/2405.14555v2
- Date: Sat, 25 May 2024 15:38:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 11:47:21.713774
- Title: Subtle Biases Need Subtler Measures: Dual Metrics for Evaluating Representative and Affinity Bias in Large Language Models
- Title(参考訳): サブストラクタ対策が必要なサブストラクタ:大規模言語モデルにおける代表的・親和性バイアスの評価のための2つの指標
- Authors: Abhishek Kumar, Sarfaroz Yunusov, Ali Emami,
- Abstract要約: 本研究は,Large Language Models (LLMs) における2つのバイアス,代表バイアスと親和性バイアスに対処する。
我々は,これらのバイアスを測定するために,代表バイアススコア(RBS)と親和性バイアススコア(ABS)の2つの新しい指標を導入する。
我々の分析では、白人、ストレート、男性と関連する身元を選好する著名なLSMにおいて、顕著な偏見が明らかとなった。
親和性バイアスによる各モデルにおける特徴的評価パターンの解明
- 参考スコア(独自算出の注目度): 10.73340009530019
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research on Large Language Models (LLMs) has often neglected subtle biases that, although less apparent, can significantly influence the models' outputs toward particular social narratives. This study addresses two such biases within LLMs: representative bias, which denotes a tendency of LLMs to generate outputs that mirror the experiences of certain identity groups, and affinity bias, reflecting the models' evaluative preferences for specific narratives or viewpoints. We introduce two novel metrics to measure these biases: the Representative Bias Score (RBS) and the Affinity Bias Score (ABS), and present the Creativity-Oriented Generation Suite (CoGS), a collection of open-ended tasks such as short story writing and poetry composition, designed with customized rubrics to detect these subtle biases. Our analysis uncovers marked representative biases in prominent LLMs, with a preference for identities associated with being white, straight, and men. Furthermore, our investigation of affinity bias reveals distinctive evaluative patterns within each model, akin to `bias fingerprints'. This trend is also seen in human evaluators, highlighting a complex interplay between human and machine bias perceptions.
- Abstract(参考訳): LLM(Large Language Models)の研究は、しばしば微妙な偏見を無視している。
本研究は, LLM内の2つのバイアスに対処する: 代表バイアスは, LLMが特定のアイデンティティグループの経験を反映した出力を生成する傾向を示し, 特定の物語や視点に対するモデルの評価的嗜好を反映する親和性バイアスである。
本稿では,これらのバイアスを測定するために,代表バイアススコア(RBS)と親和性バイアススコア(ABS)の2つの新しい指標を紹介した。
我々の分析では、白人、ストレート、男性と関連する身元を選好する著名なLSMにおいて、顕著な偏見が明らかとなった。
さらに,親和性バイアスを調べた結果,各モデルに特徴的な評価パターンがみられた。
この傾向は人間の評価にも見られ、人間と機械の偏見の複雑な相互作用を浮き彫りにしている。
関連論文リスト
- GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
本稿では,GenderBias-emphVLベンチマークを用いて,大規模視覚言語モデルにおける職業関連性バイアスの評価を行う。
ベンチマークを用いて15のオープンソースLVLMと最先端の商用APIを広範囲に評価した。
既存のLVLMでは男女差が広くみられた。
論文 参考訳(メタデータ) (2024-06-30T05:55:15Z) - VLBiasBench: A Comprehensive Benchmark for Evaluating Bias in Large Vision-Language Model [72.13121434085116]
VLBiasBenchは、LVLM(Large Vision-Language Models)におけるバイアスの評価を目的としたベンチマークである。
我々は、年齢、障害状態、性別、国籍、身体的外観、人種、宗教、職業、社会的経済状態、および2つの交叉バイアスカテゴリー(人種x性、人種x社会経済状態)を含む9つの異なる社会バイアスカテゴリーを含むデータセットを構築した。
15のオープンソースモデルと1つの高度なクローズドソースモデルに対して広範な評価を行い、これらのモデルから明らかになったバイアスに関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2024-06-20T10:56:59Z) - Locating and Mitigating Gender Bias in Large Language Models [40.78150878350479]
大規模言語モデル(LLM)は、人間の好みを含む事実や人間の認知を学ぶために、広範囲なコーパスで事前訓練されている。
このプロセスは、社会においてバイアスや一般的なステレオタイプを取得するこれらのモデルに必然的に導かれる可能性がある。
本稿では,職業代名詞の性別バイアスを軽減する知識編集手法LSDMを提案する。
論文 参考訳(メタデータ) (2024-03-21T13:57:43Z) - ROBBIE: Robust Bias Evaluation of Large Generative Language Models [27.864027322486375]
異なるプロンプトベースのデータセットを使用して、複数のテキストドメインと人口統計軸にわたる社会的バイアスを測定することができる。
我々は,12の人口動態軸と5のジェネレーションLLMの家系の6つの異なるプロンプトベースのバイアスと毒性の指標を比較した。
3つのバイアス/毒性の緩和技術が、我々の一連の測定においていかにうまく機能するかを包括的に研究する。
論文 参考訳(メタデータ) (2023-11-29T23:03:04Z) - Social Bias Probing: Fairness Benchmarking for Language Models [38.180696489079985]
本稿では,社会的偏見を考慮した言語モデル構築のための新しい枠組みを提案する。
既存のフェアネスコレクションの制限に対処するために設計された大規模なベンチマークであるSOFAをキュレートする。
既存のベンチマークと比較すると、言語モデル内のバイアスは認識されるよりもニュアンスが高いことが分かる。
論文 参考訳(メタデータ) (2023-11-15T16:35:59Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - MultiModal Bias: Introducing a Framework for Stereotypical Bias
Assessment beyond Gender and Race in Vision Language Models [40.12132844347926]
MMBiasと呼ばれる視覚的およびテキスト的バイアスベンチマークを提供し、約3,800の画像と14のサブグループをカバーするフレーズからなる。
このデータセットを用いて、CLIP、ALBEF、VLTを含むいくつかの著名な自己監督型マルチモーダルモデルにおけるバイアスを評価する。
バイアスを緩和するための後処理ステップとして適用可能な,大規模な事前学習モデルに特化して設計されたデバイアス処理手法を提案する。
論文 参考訳(メタデータ) (2023-03-16T17:36:37Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - Testing Occupational Gender Bias in Language Models: Towards Robust Measurement and Zero-Shot Debiasing [98.07536837448293]
大規模言語モデル(LLM)は、様々な人口層に対して有害で人間らしいバイアスを示すことが示されている。
生成言語モデルにおけるバイアスを頑健に測定するためのdesiderataのリストを紹介する。
次に、このベンチマークを使用して、Llama、Mistral、およびそれらの命令チューニングバージョンを含む、最先端のオープンソースLLMをテストします。
論文 参考訳(メタデータ) (2022-12-20T22:41:24Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
自然言語処理におけるバイアスは、性別や人種などの著者の特徴を学習するモデルから生じる。
既存のバイアスの緩和と測定方法は、著者の人口統計学と言語変数の相関を直接考慮していない。
本稿では,インスタンス再重み付けを用いたバイアス対策法を提案する。
論文 参考訳(メタデータ) (2021-09-16T23:40:28Z) - Worst of Both Worlds: Biases Compound in Pre-trained Vision-and-Language
Models [17.90351661475405]
この研究は、テキストベースのバイアス分析手法を拡張し、マルチモーダル言語モデルを調べる。
VL-BERTが性別バイアスを示し、視覚シーンを忠実に表現するよりもステレオタイプを強化することを好むことが多いことを実証します。
論文 参考訳(メタデータ) (2021-04-18T00:02:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。