論文の概要: Top-Down Partitioning for Efficient List-Wise Ranking
- arxiv url: http://arxiv.org/abs/2405.14589v1
- Date: Thu, 23 May 2024 14:00:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 00:01:55.070415
- Title: Top-Down Partitioning for Efficient List-Wise Ranking
- Title(参考訳): 効率的なリストワイズランキングのためのトップダウン分割
- Authors: Andrew Parry, Sean MacAvaney, Debasis Ganguly,
- Abstract要約: 本稿では、ランクを深さkに分割し、文書をトップダウンで処理する新しいアルゴリズムを提案する。
このアルゴリズムは、文書から任意の深さまでを同時に比較できるピボット要素を用いることにより、本質的に並列化可能である。
- 参考スコア(独自算出の注目度): 24.600506147325717
- License:
- Abstract: Large Language Models (LLMs) have significantly impacted many facets of natural language processing and information retrieval. Unlike previous encoder-based approaches, the enlarged context window of these generative models allows for ranking multiple documents at once, commonly called list-wise ranking. However, there are still limits to the number of documents that can be ranked in a single inference of the model, leading to the broad adoption of a sliding window approach to identify the k most relevant items in a ranked list. We argue that the sliding window approach is not well-suited for list-wise re-ranking because it (1) cannot be parallelized in its current form, (2) leads to redundant computational steps repeatedly re-scoring the best set of documents as it works its way up the initial ranking, and (3) prioritizes the lowest-ranked documents for scoring rather than the highest-ranked documents by taking a bottom-up approach. Motivated by these shortcomings and an initial study that shows list-wise rankers are biased towards relevant documents at the start of their context window, we propose a novel algorithm that partitions a ranking to depth k and processes documents top-down. Unlike sliding window approaches, our algorithm is inherently parallelizable due to the use of a pivot element, which can be compared to documents down to an arbitrary depth concurrently. In doing so, we reduce the number of expected inference calls by around 33% when ranking at depth 100 while matching the performance of prior approaches across multiple strong re-rankers.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語処理と情報検索の多くの側面に大きな影響を与えている。
従来のエンコーダベースのアプローチとは異なり、これらの生成モデルの拡張されたコンテキストウィンドウは、複数の文書を一度にランク付けすることができる。
しかし、モデル単一の推論でランク付けできる文書の数にはまだ制限があるため、ランク付けされたリストの中で最も関連性の高い項目を識別するスライディングウインドウアプローチが広く採用されている。
スライドウインドウ手法は,(1)現在の形式では並列化できないこと,(2)最良文書群を初期ランキングに引き上げる際に冗長な計算手順を繰り返すこと,(3)ボトムアップアプローチによって最上位文書よりも最下位文書を優先すること,などの理由から,リストワイドな再ランク付けには適していない,と論じる。
これらの欠点と、リストワイドランキングがコンテキストウィンドウの開始時に関連文書に偏っていることを示す最初の研究により、ランクを深さkに分割し、トップダウンで文書を処理する新しいアルゴリズムを提案する。
スライディングウインドウアプローチとは異なり、このアルゴリズムはピボット要素を用いることにより本質的に並列化可能であり、文書を任意の深さまで同時に比較することができる。
これにより、複数の強力なリランカにまたがる先行アプローチのパフォーマンスを一致させながら、深さ100のランク付け時に予測される推論呼び出し数を約33%削減する。
関連論文リスト
- AGRaME: Any-Granularity Ranking with Multi-Vector Embeddings [53.78802457488845]
我々は,多ベクトル埋め込みを利用して粒度の異なるレベルにランク付けする,任意の粒度ランキングの考え方を紹介した。
検索強化世代におけるポストホック励振付加への命題レベルのランク付けの適用を実証する。
論文 参考訳(メタデータ) (2024-05-23T20:04:54Z) - List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation [80.12531449946655]
本稿では,2つのタスクを同時に実行可能なRe rank-Truncation joint model(GenRT)を提案する。
GenRTは、エンコーダ-デコーダアーキテクチャに基づく生成パラダイムによるリランクとトランケーションを統合している。
提案手法は,Web検索および検索拡張LLMにおけるリランクタスクとトラルケーションタスクの両方においてSOTA性能を実現する。
論文 参考訳(メタデータ) (2024-02-05T06:52:53Z) - Found in the Middle: Permutation Self-Consistency Improves Listwise Ranking in Large Language Models [63.714662435555674]
大規模言語モデル(LLM)は、文脈の使い方に位置バイアスを示す。
我々は,ブラックボックスLLMのランキングリスト出力に対して,自己整合性(permutation self-consistency)を提案する。
LLaMA v2 (70B) では GPT-3.5 では 7-18% , LLaMA v2 (70B) では 8-16% である。
論文 参考訳(メタデータ) (2023-10-11T17:59:02Z) - Replace Scoring with Arrangement: A Contextual Set-to-Arrangement
Framework for Learning-to-Rank [40.81502990315285]
ラーニング・トゥ・ランク(Learning-to-rank)は、トップNレコメンデーションタスクの中核的なテクニックであり、理想的なランク付けはアイテムからアレンジへのマッピングである。
既存のソリューションのほとんどは確率的ランキング原理(PRP)のパラダイムに該当する。すなわち、まず候補セットで各項目をスコアし、次にソート操作を行い、トップランキングリストを生成する。
本稿では,個別のスコアリングやソートを必要とせずに,候補項目の順列を直接生成する新しいフレームワークであるSet-To-Arrangement Ranking (STARank)を提案する。
論文 参考訳(メタデータ) (2023-08-05T12:22:26Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
本稿では,タスク固有の学習データを用いることなく,言語モデル(LRL)を用いたリスワイズ・リランカを提案する。
3つのTRECウェブサーチデータセットの実験により、LRLは第1段検索結果の再ランク付け時にゼロショットポイントワイズ法より優れるだけでなく、最終段再ランカとしても機能することが示された。
論文 参考訳(メタデータ) (2023-05-03T14:45:34Z) - A Comparison of Approaches for Imbalanced Classification Problems in the
Context of Retrieving Relevant Documents for an Analysis [0.0]
本研究は,クエリ拡張手法,トピックモデルに基づく分類規則,能動的および受動的教師あり学習を比較した。
その結果、ほとんどの研究環境におけるクエリ拡張手法とトピックモデルに基づく分類規則は、検索性能を向上するよりも低下する傾向にあることがわかった。
論文 参考訳(メタデータ) (2022-05-03T16:22:42Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
本稿では,ジェネレーション方式で証拠を検索する最初のシステムであるGEREを提案する。
FEVERデータセットの実験結果は、GEREが最先端のベースラインよりも大幅に改善されていることを示している。
論文 参考訳(メタデータ) (2022-04-12T03:49:35Z) - CODER: An efficient framework for improving retrieval through
COntextualized Document Embedding Reranking [11.635294568328625]
本稿では,最小計算コストで広範囲の検索モデルの性能を向上させるためのフレームワークを提案する。
ベース密度検索法により抽出された事前計算された文書表現を利用する。
実行時に第一段階のメソッドの上に無視可能な計算オーバーヘッドを発生させ、最先端の高密度検索手法と簡単に組み合わせられるようにする。
論文 参考訳(メタデータ) (2021-12-16T10:25:26Z) - Improving Document Representations by Generating Pseudo Query Embeddings
for Dense Retrieval [11.465218502487959]
反復的なクラスタリングプロセスにより,各文書のクエリを模倣する手法を設計する。
また、2段階のスコア計算手順でマッチング関数を最適化する。
いくつかの人気ランキングとQAデータセットに関する実験結果から、私たちのモデルが最先端の結果を達成できることが示された。
論文 参考訳(メタデータ) (2021-05-08T05:28:24Z) - Pre-training Tasks for Embedding-based Large-scale Retrieval [68.01167604281578]
本稿では,大規模クエリ文書検索問題について考察する。
クエリ(例えば質問)が与えられたら、関連するドキュメントのセットを大きなドキュメントコーパスから返します。
本稿では, 組込み型トランスフォーマーモデルの学習の鍵となる要素が, 事前学習作業のセットであることを示す。
論文 参考訳(メタデータ) (2020-02-10T16:44:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。