Intervention and Conditioning in Causal Bayesian Networks
- URL: http://arxiv.org/abs/2405.14728v1
- Date: Thu, 23 May 2024 15:55:38 GMT
- Title: Intervention and Conditioning in Causal Bayesian Networks
- Authors: Sainyam Galhotra, Joseph Y. Halpern,
- Abstract summary: We show that by making simple yet often realistic independence assumptions, it is possible to estimate the probability of an interventional formula.
In many cases of interest, when the assumptions are appropriate, these probability estimates can be evaluated using observational data.
- Score: 23.225006087292765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal models are crucial for understanding complex systems and identifying causal relationships among variables. Even though causal models are extremely popular, conditional probability calculation of formulas involving interventions pose significant challenges. In case of Causal Bayesian Networks (CBNs), Pearl assumes autonomy of mechanisms that determine interventions to calculate a range of probabilities. We show that by making simple yet often realistic independence assumptions, it is possible to uniquely estimate the probability of an interventional formula (including the well-studied notions of probability of sufficiency and necessity). We discuss when these assumptions are appropriate. Importantly, in many cases of interest, when the assumptions are appropriate, these probability estimates can be evaluated using observational data, which carries immense significance in scenarios where conducting experiments is impractical or unfeasible.
Related papers
- An Overview of Causal Inference using Kernel Embeddings [14.298666697532838]
Kernel embeddings have emerged as a powerful tool for representing probability measures in a variety of statistical inference problems.
Main challenges include identifying causal associations and estimating the average treatment effect from observational data.
arXiv Detail & Related papers (2024-10-30T07:23:34Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Identifiability Guarantees for Causal Disentanglement from Soft
Interventions [26.435199501882806]
Causal disentanglement aims to uncover a representation of data using latent variables that are interrelated through a causal model.
In this paper, we focus on the scenario where unpaired observational and interventional data are available, with each intervention changing the mechanism of a latent variable.
When the causal variables are fully observed, statistically consistent algorithms have been developed to identify the causal model under faithfulness assumptions.
arXiv Detail & Related papers (2023-07-12T15:39:39Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
We show that diffusion models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems.
We develop a probabilistic approximation scheme for the conditional score function which converges to the true distribution as the noise level decreases.
We are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
arXiv Detail & Related papers (2023-06-13T03:42:03Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Inferential Moments of Uncertain Multivariable Systems [0.0]
We treat Bayesian probability updating as a random process and uncover intrinsic quantitative features of joint probability distributions called inferential moments.
Inferential moments quantify shape information about how a prior distribution is expected to update in response to yet to be obtained information.
We find a power series expansion of the mutual information in terms of inferential moments, which implies a connection between inferential theoretic logic and elements of information theory.
arXiv Detail & Related papers (2023-05-03T00:56:12Z) - Probabilities of the Third Type: Statistical Relational Learning and Reasoning with Relative Frequencies [0.0]
Dependencies on the relative frequency of a state in the domain are common when modelling probabilistic dependencies on relational data.
We introduce functional lifted Bayesian networks, a formalism that explicitly incorporates continuous dependencies on relative frequencies into statistical relational artificial intelligence.
arXiv Detail & Related papers (2022-02-21T17:04:05Z) - Causes of Effects: Learning individual responses from population data [23.593582720307207]
We study the problem of individualization and its applications in medicine.
For example, the probability of benefiting from a treatment concerns an individual having a favorable outcome if treated and an unfavorable outcome if untreated.
We analyze and expand on existing research by applying bounds to the probability of necessity and sufficiency (PNS) along with graphical criteria and practical applications.
arXiv Detail & Related papers (2021-04-28T12:38:11Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.