論文の概要: RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from
Sparse Inputs
- arxiv url: http://arxiv.org/abs/2112.00724v1
- Date: Wed, 1 Dec 2021 18:59:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-02 13:58:58.865358
- Title: RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from
Sparse Inputs
- Title(参考訳): RegNeRF:スパース入力からのビュー合成のための正則化ニューラルラジアンス場
- Authors: Michael Niemeyer, Jonathan T. Barron, Ben Mildenhall, Mehdi S. M.
Sajjadi, Andreas Geiger, Noha Radwan
- Abstract要約: 我々は,多くの入力ビューが利用可能である場合,NeRFは見えない視点のフォトリアリスティックレンダリングを生成することができることを示す。
我々は、未観測の視点からレンダリングされたパッチの幾何学と外観を規則化することで、この問題に対処する。
我々のモデルは、1つのシーンで最適化する他の方法よりも、大規模なマルチビューデータセットで広範囲に事前訓練された条件付きモデルよりも優れています。
- 参考スコア(独自算出の注目度): 79.00855490550367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Fields (NeRF) have emerged as a powerful representation for
the task of novel view synthesis due to their simplicity and state-of-the-art
performance. Though NeRF can produce photorealistic renderings of unseen
viewpoints when many input views are available, its performance drops
significantly when this number is reduced. We observe that the majority of
artifacts in sparse input scenarios are caused by errors in the estimated scene
geometry, and by divergent behavior at the start of training. We address this
by regularizing the geometry and appearance of patches rendered from unobserved
viewpoints, and annealing the ray sampling space during training. We
additionally use a normalizing flow model to regularize the color of unobserved
viewpoints. Our model outperforms not only other methods that optimize over a
single scene, but in many cases also conditional models that are extensively
pre-trained on large multi-view datasets.
- Abstract(参考訳): neural radiance fields(nerf)は、その単純さと最先端のパフォーマンスのために、新しいビュー合成のタスクの強力な表現として登場した。
多くの入力ビューが利用可能である場合、NeRFは見当たらない視点のフォトリアリスティックレンダリングを生成することができるが、この数を減らすと、その性能は大幅に低下する。
スパース入力シナリオにおけるアーティファクトの大多数は,推定されたシーン形状の誤差と,トレーニング開始時の振る舞いの相違によるものである。
我々は、観測されていない視点からレンダリングされたパッチの形状と外観を規則化し、トレーニング中にレイサンプリング空間をアニーする。
さらに,監視されていない視点の色を正規化するために正規化フローモデルを用いる。
我々のモデルは、一つのシーンで最適化する他の方法よりも、大規模なマルチビューデータセットで広範囲に事前訓練された条件付きモデルよりも優れています。
関連論文リスト
- NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
最近の研究は、遠方の環境照明の詳細な明細な外観を描画するNeRFの能力を改善しているが、近い内容の一貫した反射を合成することはできない。
我々はこれらの問題をレイトレーシングに基づくアプローチで解決する。
このモデルでは、それぞれのカメラ線に沿った点における視界依存放射率を求めるために高価なニューラルネットワークをクエリする代わりに、これらの点から光を流し、NeRF表現を通して特徴ベクトルを描画します。
論文 参考訳(メタデータ) (2024-05-23T17:59:57Z) - Simple-RF: Regularizing Sparse Input Radiance Fields with Simpler Solutions [5.699788926464751]
ニューラル・ラジアンス・フィールド(NeRF)は、シーンのフォトリアリスティックなフリービューレンダリングにおいて印象的なパフォーマンスを示す。
TensoRFやZipNeRFといったNeRFの最近の改良は、最適化とレンダリングの高速化のために明示的なモデルを採用している。
放射場によって推定される深度を監督することは、より少ない視点で効果的に学習することに役立つことを示す。
論文 参考訳(メタデータ) (2024-04-29T18:00:25Z) - HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces [71.1071688018433]
ニューラル放射場は、最先端のビュー合成品質を提供するが、レンダリングが遅くなる傾向がある。
本稿では,ほとんどの物体を表面としてレンダリングすることで,両表現の強みを生かしたHybridNeRFを提案する。
仮想現実分解能(2Kx2K)のリアルタイムフレームレート(少なくとも36FPS)を達成しながら、エラー率を15~30%改善する。
論文 参考訳(メタデータ) (2023-12-05T22:04:49Z) - SimpleNeRF: Regularizing Sparse Input Neural Radiance Fields with
Simpler Solutions [6.9980855647933655]
NeRFによって推定される深さの監視は、より少ないビューで効果的にトレーニングするのに役立つ。
我々は、位置エンコーディングとビュー依存放射能の役割を探求することによって、より単純な解決を促進する拡張モデルの設計を行う。
上記の正規化を用いて、2つの一般的なデータセット上での最先端のビュー合成性能を実現する。
論文 参考訳(メタデータ) (2023-09-07T18:02:57Z) - Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction [60.52716381465063]
我々は,限られた入力画像のみを用いて,スパースビュー再構成を改善するために,Deceptive-NeRF/3DGSを導入した。
具体的には,少数視点再構成によるノイズ画像から高品質な擬似観測へ変換する,偽拡散モデルを提案する。
本システムでは,拡散生成擬似観測をトレーニング画像集合に徐々に組み込んで,スパース入力観測を5倍から10倍に高めている。
論文 参考訳(メタデータ) (2023-05-24T14:00:32Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
本稿では,スパース入力センサビューから観測される大規模な屋外運転シーンをモデル化することで,NeRFを大幅に改善するCLONeRを提案する。
これは、NeRFフレームワーク内の占有率と色学習を、それぞれLiDARとカメラデータを用いてトレーニングされた個別のMulti-Layer Perceptron(MLP)に分離することで実現される。
さらに,NeRFモデルと平行に3D Occupancy Grid Maps(OGM)を構築する手法を提案し,この占有グリッドを利用して距離空間のレンダリングのために線に沿った点のサンプリングを改善する。
論文 参考訳(メタデータ) (2022-09-02T17:44:50Z) - Cascaded and Generalizable Neural Radiance Fields for Fast View
Synthesis [35.035125537722514]
ビュー合成のためのカスケードおよび一般化可能なニューラル放射場法であるCG-NeRFを提案する。
DTUデータセットの複数の3DシーンでCG-NeRFをトレーニングする。
CG-NeRFは、様々な合成および実データに対して、最先端の一般化可能なニューラルネットワークレンダリング手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-09T12:23:48Z) - Generalizable Patch-Based Neural Rendering [46.41746536545268]
未知のシーンの新たなビューを合成できるモデル学習のための新しいパラダイムを提案する。
本手法は,シーンから採取したパッチの集合からのみ,新規シーンにおける対象光線の色を直接予測することができる。
本手法は,従来よりも少ないデータでトレーニングされた場合であっても,目立たないシーンの新たなビュー合成において,最先端のビュー合成よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-07-21T17:57:04Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
ニューラルレイディアンス場(NeRF)法は目覚ましい新しいビュー合成を実証している。
この作業では、バニラ粗大なアプローチの明確な制限に対処します -- パフォーマンスに基づいており、手元にあるタスクのエンドツーエンドをトレーニングしていません。
我々は、サンプルの提案と、そのネットワークにおける重要性を学習し、そのニューラルネットワークアーキテクチャに対する複数の代替案を検討し比較する、微分可能なモジュールを導入する。
論文 参考訳(メタデータ) (2021-06-09T17:59:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。