Universal Robustness via Median Randomized Smoothing for Real-World Super-Resolution
- URL: http://arxiv.org/abs/2405.14934v1
- Date: Thu, 23 May 2024 18:00:01 GMT
- Title: Universal Robustness via Median Randomized Smoothing for Real-World Super-Resolution
- Authors: Zakariya Chaouai, Mohamed Tamaazousti,
- Abstract summary: This paper explores the universality of various methods for enhancing the robustness of deep learning Super-Resolution models.
We show that median randomized smoothing (MRS) is more general in terms of robustness compared to adversarial learning techniques.
As expected, we also illustrate that the proposed universal robust method enables the SR model to handle standard corruptions more effectively.
- Score: 7.638042073679073
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Most of the recent literature on image Super-Resolution (SR) can be classified into two main approaches. The first one involves learning a corruption model tailored to a specific dataset, aiming to mimic the noise and corruption in low-resolution images, such as sensor noise. However, this approach is data-specific, tends to lack adaptability, and its accuracy diminishes when faced with unseen types of image corruptions. A second and more recent approach, referred to as Robust Super-Resolution (RSR), proposes to improve real-world SR by harnessing the generalization capabilities of a model by making it robust to adversarial attacks. To delve further into this second approach, our paper explores the universality of various methods for enhancing the robustness of deep learning SR models. In other words, we inquire: "Which robustness method exhibits the highest degree of adaptability when dealing with a wide range of adversarial attacks ?". Our extensive experimentation on both synthetic and real-world images empirically demonstrates that median randomized smoothing (MRS) is more general in terms of robustness compared to adversarial learning techniques, which tend to focus on specific types of attacks. Furthermore, as expected, we also illustrate that the proposed universal robust method enables the SR model to handle standard corruptions more effectively, such as blur and Gaussian noise, and notably, corruptions naturally present in real-world images. These results support the significance of shifting the paradigm in the development of real-world SR methods towards RSR, especially via MRS.
Related papers
- Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - Better "CMOS" Produces Clearer Images: Learning Space-Variant Blur
Estimation for Blind Image Super-Resolution [30.816546273417774]
We introduce two new datasets with out-of-focus blur, i.e., NYUv2-BSR and Cityscapes-BSR, to support further researches of blind SR with space-variant blur.
Based on the datasets, we design a novel Cross-MOdal fuSion network (CMOS) that estimate both blur and semantics simultaneously.
arXiv Detail & Related papers (2023-04-07T08:40:31Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input.
Deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets.
We propose Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1-based cooperative learning.
arXiv Detail & Related papers (2022-06-06T13:28:15Z) - Generalized Real-World Super-Resolution through Adversarial Robustness [107.02188934602802]
We present Robust Super-Resolution, a method that leverages the generalization capability of adversarial attacks to tackle real-world SR.
Our novel framework poses a paradigm shift in the development of real-world SR methods.
By using a single robust model, we outperform state-of-the-art specialized methods on real-world benchmarks.
arXiv Detail & Related papers (2021-08-25T22:43:20Z) - SRDiff: Single Image Super-Resolution with Diffusion Probabilistic
Models [19.17571465274627]
Single image super-resolution (SISR) aims to reconstruct high-resolution (HR) images from the given low-resolution (LR) ones.
We propose a novel single image super-resolution diffusion probabilistic model (SRDiff)
SRDiff is optimized with a variant of the variational bound on the data likelihood and can provide diverse and realistic SR predictions.
arXiv Detail & Related papers (2021-04-30T12:31:25Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Joint Generative Learning and Super-Resolution For Real-World
Camera-Screen Degradation [6.14297871633911]
In real-world single image super-resolution (SISR) task, the low-resolution image suffers more complicated degradations.
In this paper, we focus on the camera-screen degradation and build a real-world dataset (Cam-ScreenSR)
We propose a joint two-stage model. Firstly, the downsampling degradation GAN(DD-GAN) is trained to model the degradation and produces more various of LR images.
Then the dual residual channel attention network (DuRCAN) learns to recover the SR image.
arXiv Detail & Related papers (2020-08-01T07:10:13Z) - DDet: Dual-path Dynamic Enhancement Network for Real-World Image
Super-Resolution [69.2432352477966]
Real image super-resolution(Real-SR) focus on the relationship between real-world high-resolution(HR) and low-resolution(LR) image.
In this article, we propose a Dual-path Dynamic Enhancement Network(DDet) for Real-SR.
Unlike conventional methods which stack up massive convolutional blocks for feature representation, we introduce a content-aware framework to study non-inherently aligned image pair.
arXiv Detail & Related papers (2020-02-25T18:24:51Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.