論文の概要: Music Genre Classification: Training an AI model
- arxiv url: http://arxiv.org/abs/2405.15096v1
- Date: Thu, 23 May 2024 23:07:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 18:48:01.374537
- Title: Music Genre Classification: Training an AI model
- Title(参考訳): 音楽ジャンル分類:AIモデルのトレーニング
- Authors: Keoikantse Mogonediwa,
- Abstract要約: 音楽ジャンル分類は、音声信号の処理に機械学習モデルと技法を利用する分野である。
本研究では,音楽ジャンル分類のための機械学習アルゴリズムについて,音声信号から抽出した特徴を用いて検討する。
ジャンル分類のための機械学習モデルの堅牢性を評価し、その結果を比較することを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Music genre classification is an area that utilizes machine learning models and techniques for the processing of audio signals, in which applications range from content recommendation systems to music recommendation systems. In this research I explore various machine learning algorithms for the purpose of music genre classification, using features extracted from audio signals.The systems are namely, a Multilayer Perceptron (built from scratch), a k-Nearest Neighbours (also built from scratch), a Convolutional Neural Network and lastly a Random Forest wide model. In order to process the audio signals, feature extraction methods such as Short-Time Fourier Transform, and the extraction of Mel Cepstral Coefficients (MFCCs), is performed. Through this extensive research, I aim to asses the robustness of machine learning models for genre classification, and to compare their results.
- Abstract(参考訳): 音楽ジャンル分類は、音声信号の処理に機械学習モデルと技術を利用する分野であり、その分野はコンテンツレコメンデーションシステムから音楽レコメンデーションシステムまで様々である。
本研究では,音楽ジャンル分類のための機械学習アルゴリズムについて,音声信号から抽出した特徴を用いて検討する。そのシステムは,多層パーセプトロン(スクラッチから構築),k-Nearest Neighbours(スクラッチから構築),畳み込みニューラルネットワーク(畳み込みニューラルネットワーク),最後にランダムフォレスト広範モデルである。
音声信号を処理するために、ショートタイムフーリエ変換やメルケプストラル係数(MFCC)抽出などの特徴抽出を行う。
この広範な研究を通じて、ジャンル分類のための機械学習モデルの堅牢性を評価し、その結果を比較することを目的としている。
関連論文リスト
- Improving Musical Instrument Classification with Advanced Machine Learning Techniques [0.0]
近年の機械学習、特にディープラーニングの進歩により、楽器を音声信号から識別し分類する能力が強化されている。
本研究では,Naive Bayes,Support Vector Machines,Random Forests,AdaBoostやXGBoostといったBootingテクニックなど,さまざまな機械学習手法を適用した。
これらの手法の有効性を,注釈付き音声の大規模リポジトリであるN Synthデータセットを用いて評価した。
論文 参考訳(メタデータ) (2024-11-01T00:13:46Z) - Audio Processing using Pattern Recognition for Music Genre Classification [0.0]
本研究は,GTZANデータセットを用いた音楽ジャンル分類における機械学習手法の適用について検討する。
パーソナライズされた音楽レコメンデーションの需要が高まる中、私たちは、ブルース、クラシック、ジャズ、ヒップホップ、カントリーという5つのジャンルの分類に注力しました。
ANNモデルは最高の性能を示し、検証精度は92.44%に達した。
論文 参考訳(メタデータ) (2024-10-19T05:44:05Z) - Music Genre Classification using Large Language Models [50.750620612351284]
本稿では,音楽ジャンル分類のための事前学習された大規模言語モデル(LLM)のゼロショット機能を利用する。
提案手法は、音声信号を20ミリ秒のチャンクに分割し、畳み込み特徴エンコーダで処理する。
推論中、個々のチャンクの予測は最終ジャンル分類のために集約される。
論文 参考訳(メタデータ) (2024-10-10T19:17:56Z) - Music Genre Classification: A Comparative Analysis of CNN and XGBoost
Approaches with Mel-frequency cepstral coefficients and Mel Spectrograms [0.0]
提案した畳み込みニューラルネットワーク(CNN)、完全連結層(FC)を持つVGG16、異なる特徴に対するeXtreme Gradient Boosting(XGBoost)アプローチの3つのモデルの性能について検討した。
さらに,データ前処理フェーズにデータセグメンテーションを適用することで,CNNの性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-01-09T01:50:31Z) - Music Genre Classification with ResNet and Bi-GRU Using Visual
Spectrograms [4.354842354272412]
手動のジャンル分類の限界は、より高度なシステムの必要性を強調している。
従来の機械学習技術はジャンル分類の可能性を示してきたが、音楽データの完全な複雑さを捉えられなかった。
本研究では,視覚スペクトログラムを入力として用いる新しいアプローチを提案し,Residual Neural Network(ResNet)とGated Recurrent Unit(GRU)の強みを組み合わせたハイブリッドモデルを提案する。
論文 参考訳(メタデータ) (2023-07-20T11:10:06Z) - Audio classification using ML methods [2.132096006921048]
コードでは、オーディオファイルから特徴を抽出し、教師付き学習を用いて分類する方法を古典と金属の2つのジャンルに分類する。
使用するアルゴリズムはLogisticRegression、異なるカーネル(線形、シグミド、rbf、ポリ)を使用したSVC、KNeighborsClassifier、DecisionTreeClassifierである。
論文 参考訳(メタデータ) (2023-05-30T15:42:13Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - A framework to compare music generative models using automatic
evaluation metrics extended to rhythm [69.2737664640826]
本稿では,前回の研究で提示された,リズムを考慮せず,設計決定を下すための枠組みを取り上げ,単音素音楽作成における2つのrnnメモリセルの性能評価のためにリズムサポートを付加した。
モデルでは,音素変換の処理を考慮し,リズムサポートを付加した幾何学に基づく自動計測値を用いて,生成した楽曲の質を評価する。
論文 参考訳(メタデータ) (2021-01-19T15:04:46Z) - Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music [69.2737664640826]
本稿では,異なる種類の記憶機構(メモリセル)について評価し,音楽合成分野におけるその性能について検討する。
提案したアーキテクチャの性能を自動評価するために,定量的な測定値のセットが提示される。
論文 参考訳(メタデータ) (2020-12-02T14:19:19Z) - Fast accuracy estimation of deep learning based multi-class musical
source separation [79.10962538141445]
本稿では,ニューラルネットワークのトレーニングやチューニングを行うことなく,任意のデータセットにおける楽器の分離性を評価する手法を提案する。
理想的な比マスクを持つオラクルの原理に基づいて、我々の手法は最先端のディープラーニング手法の分離性能を推定するための優れたプロキシである。
論文 参考訳(メタデータ) (2020-10-19T13:05:08Z) - RL-Duet: Online Music Accompaniment Generation Using Deep Reinforcement
Learning [69.20460466735852]
本稿では,オンライン伴奏生成のための深層強化学習アルゴリズムを提案する。
提案アルゴリズムは人体に応答し,メロディック,ハーモニック,多種多様な機械部品を生成する。
論文 参考訳(メタデータ) (2020-02-08T03:53:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。