論文の概要: Cardinality Estimation on Hyper-relational Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2405.15231v1
- Date: Fri, 24 May 2024 05:44:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 17:59:14.975586
- Title: Cardinality Estimation on Hyper-relational Knowledge Graphs
- Title(参考訳): ハイパーリレーショナル知識グラフによる心性評価
- Authors: Fei Teng, Haoyang Li, Shimin Di, Lei Chen,
- Abstract要約: クエリのカーディナリティ推定(CE)は、実行せずに結果の数を推定することである。
現在の研究者は、高関係KGs (HKGs) を、3つの事実を等化子で表すために提案している。
そこで本研究では,CEを調査するための3つの一般的なHKGに対して,多種多様かつ偏りのないハイパーリレーショナルクエリセットを構築した。
- 参考スコア(独自算出の注目度): 19.30637362876516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardinality Estimation (CE) for query is to estimate the number of results without execution, which is an effective index in query optimization. Recently, CE over has achieved great success in knowledge graphs (KGs) that consist of triple facts. To more precisely represent facts, current researchers propose hyper-relational KGs (HKGs) to represent a triple fact with qualifiers, where qualifiers provide additional context to the fact. However, existing CE methods over KGs achieve unsatisfying performance on HKGs due to the complexity of qualifiers in HKGs. Also, there is only one dataset for HKG query cardinality estimation, i.e., WD50K-QE, which is not comprehensive and only covers limited patterns. The lack of querysets over HKG also becomes a bottleneck to comprehensively investigate CE problems on HKGs. In this work, we first construct diverse and unbiased hyper-relational querysets over three popular HKGs for investigating CE. Besides, we also propose a novel qualifier-attached graph neural network (GNN) model that effectively incorporates qualifier information and adaptively combines outputs from multiple GNN layers, to accurately predict the cardinality. Our experiments illustrate that the proposed hyper-relational query encoder outperforms all state-of-the-art CE methods over three popular HKGs on the diverse and unbiased benchmark.
- Abstract(参考訳): クエリーのカーディナリティ推定(CE)は、クエリー最適化において有効な指標である実行せずに結果の数を推定することである。
近年,CE over は三つの事実からなる知識グラフ (KG) において大きな成功を収めている。
事実をより正確に表現するために、現在の研究者は、3つの事実を修飾子で表すための超相対的KG(英語版)(HKG)を提案している。
しかし、既存のKG上のCE法は、HKGにおける等化子の複雑さのため、HKGに対して不満足な性能を達成する。
また、HKGクエリの濃度推定のためのデータセットは1つしかない(WD50K-QE)。
HKG上のクエリセットの欠如も、HKG上のCE問題を包括的に調査するボトルネックとなっている。
そこで本研究では,CEを調査するための3つの一般的なHKGに対して,多種多様かつ偏りのないハイパーリレーショナルクエリセットを構築した。
また,複数のGNN層からの出力を適応的に結合し,その濃度を正確に予測する特徴量付きグラフニューラルネットワーク(GNN)モデルを提案する。
提案するハイパーリレーショナルクエリエンコーダは,多種多様で偏りのないベンチマークにおいて,3つの一般的なHKGに対して,最先端のCE手法よりも優れた性能を示すことを示す。
関連論文リスト
- Less is More: One-shot Subgraph Reasoning on Large-scale Knowledge Graphs [49.547988001231424]
効率的かつ適応的な予測を実現するために,ワンショットサブグラフリンク予測を提案する。
設計原理は、KG全体に直接作用する代わりに、予測手順を2つのステップに分離する。
5つの大規模ベンチマークにおいて,効率の向上と性能の向上を実現している。
論文 参考訳(メタデータ) (2024-03-15T12:00:12Z) - HAHE: Hierarchical Attention for Hyper-Relational Knowledge Graphs in
Global and Local Level [7.96433065992062]
ハイパーリレーショナル知識グラフ(HKG)のリンク予測は、価値のある取り組みである。
本稿では,HKG 埋め込み (HAHE) のための階層型アテンションモデルを提案する。
実験結果から,HAHEはHKG標準データセット上のリンク予測タスクにおいて,最先端の性能を達成することが示された。
論文 参考訳(メタデータ) (2023-05-11T05:59:31Z) - Cardinality Estimation over Knowledge Graphs with Embeddings and Graph Neural Networks [0.552480439325792]
KG(Cardinality Estimation over Knowledge Graphs)は、クエリ最適化において重要である。
本稿では,知識グラフ埋め込みとグラフニューラルネットワーク(GNN)を活用して,結合クエリの濃度を正確に予測する新しい手法であるGNCEを提案する。
論文 参考訳(メタデータ) (2023-03-02T10:39:13Z) - KGxBoard: Explainable and Interactive Leaderboard for Evaluation of
Knowledge Graph Completion Models [76.01814380927507]
KGxBoardは、データの意味のあるサブセットを詳細に評価するためのインタラクティブなフレームワークである。
実験では,KGxBoardを用いることで,標準平均シングルスコアメトリクスでは検出が不可能であったことを強調した。
論文 参考訳(メタデータ) (2022-08-23T15:11:45Z) - DHGE: Dual-View Hyper-Relational Knowledge Graph Embedding for Link
Prediction and Entity Typing [1.2932412290302255]
本稿では、エンティティのハイパーリレーショナルインスタンスビューと、エンティティから階層的に抽象化された概念のハイパーリレーショナルビューを含むデュアルビューハイパーリレーショナルKG構造(DH-KG)を提案する。
本稿では、DH-KG上のリンク予測とエンティティ型付けタスクを初めて定義し、医療データに基づいてWikidataから抽出された2つのDH-KGデータセットJW44K-6KとHTDMを構築した。
論文 参考訳(メタデータ) (2022-07-18T12:44:59Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
本稿では,スパース知識グラフ(KG)のための新しい説明可能なモデルを提案する。
高次推論をグラフ畳み込みネットワーク、すなわちHoGRNに結合する。
情報不足を緩和する一般化能力を向上させるだけでなく、解釈可能性も向上する。
論文 参考訳(メタデータ) (2022-07-14T10:16:56Z) - ExpressivE: A Spatio-Functional Embedding For Knowledge Graph Completion [78.8942067357231]
ExpressivEは、一対の実体を点として埋め込み、仮想三重空間に超平行グラフとして関係を埋め込む。
我々は、ExpressivEが最先端のKGEと競合し、W18RRでさらに優れています。
論文 参考訳(メタデータ) (2022-06-08T23:34:39Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
本モデルでは,既存のKG補完アルゴリズムよりも複雑な推論パターンを必要とする問合せに対して,より効果的に答えることを示す。
提案モデルは、KBQAベンチマークの最先端モデルよりも優れているか、競合的に動作する。
論文 参考訳(メタデータ) (2022-02-22T01:34:35Z) - Improving Hyper-Relational Knowledge Graph Completion [35.487553537419224]
hyper-relational kgs (hkgs) により、トリプレットはより複雑な情報を伝えるために、追加の関係関係対(a qualifiers)と関連付けることができる。
HKG完了のような予測タスクに対する三重項修飾子関係を効果的かつ効率的にモデル化する方法は、研究にとってオープンな課題である。
本稿では, 2つの新しい改訂点を導入することにより, hkg補完における最善の手法である stare の改良を提案する。
論文 参考訳(メタデータ) (2021-04-16T15:26:41Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
グラフ自動エンコーダ(GAE)モデルは、半教師付きグラフ畳み込みネットワーク(GCN)に基づく
我々は、グラフクラスタリングのための特定のGAEベースのモデルを設計し、その理論、すなわち、埋め込みグラフオートエンコーダ(EGAE)と整合する。
EGAEは1つのエンコーダと2つのデコーダで構成される。
論文 参考訳(メタデータ) (2020-02-20T09:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。