論文の概要: A Generalized Neural Tangent Kernel Analysis for Two-layer Neural
Networks
- arxiv url: http://arxiv.org/abs/2002.04026v2
- Date: Tue, 6 Oct 2020 17:45:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 08:39:53.043198
- Title: A Generalized Neural Tangent Kernel Analysis for Two-layer Neural
Networks
- Title(参考訳): 一般化された2層ニューラルネットワークのタンジェントカーネル解析
- Authors: Zixiang Chen and Yuan Cao and Quanquan Gu and Tong Zhang
- Abstract要約: 重み劣化を伴う雑音勾配降下は依然として「カーネル様」の挙動を示すことを示す。
これは、トレーニング損失が一定の精度まで線形に収束することを意味する。
また,重み劣化を伴う雑音勾配勾配勾配で学習した2層ニューラルネットワークに対して,新しい一般化誤差を確立する。
- 参考スコア(独自算出の注目度): 87.23360438947114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A recent breakthrough in deep learning theory shows that the training of
over-parameterized deep neural networks can be characterized by a kernel
function called \textit{neural tangent kernel} (NTK). However, it is known that
this type of results does not perfectly match the practice, as NTK-based
analysis requires the network weights to stay very close to their
initialization throughout training, and cannot handle regularizers or gradient
noises. In this paper, we provide a generalized neural tangent kernel analysis
and show that noisy gradient descent with weight decay can still exhibit a
"kernel-like" behavior. This implies that the training loss converges linearly
up to a certain accuracy. We also establish a novel generalization error bound
for two-layer neural networks trained by noisy gradient descent with weight
decay.
- Abstract(参考訳): ディープラーニング理論における最近のブレークスルーは、過剰パラメータのディープニューラルネットワークのトレーニングが、 \textit{neural tangent kernel} (ntk)と呼ばれるカーネル関数によって特徴づけられることを示している。
しかし、NTKに基づく解析では、トレーニング中にネットワークの重みが初期化に非常に近づき、正規化器や勾配雑音に対処できないため、この種の結果がプラクティスと完全に一致しないことが知られている。
本稿では,一般化された神経接核解析を行い,重み減衰を伴う雑音勾配降下が依然として「カーネル様」な挙動を示すことを示す。
これは、トレーニング損失が一定の精度まで線形に収束することを意味する。
また,重み減衰を伴う雑音勾配降下により学習した2層ニューラルネットワークに対する新しい一般化誤差を定式化する。
関連論文リスト
- Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
本稿では、ニューラルネットワークの2つのモデルと、任意の幅、深さ、トポロジーのニューラルネットワークに適用可能なトレーニングについて述べる。
また、局所外在性神経核(LeNK)の観点から、非正規化勾配降下を伴う階層型ニューラルネットワークトレーニングのための正確な表現子理論を提示する。
この表現論は、ニューラルネットワークトレーニングにおける高次統計学の役割と、ニューラルネットワークのカーネルモデルにおけるカーネル進化の影響について洞察を与える。
論文 参考訳(メタデータ) (2024-05-24T06:30:36Z) - Convergence Analysis for Learning Orthonormal Deep Linear Neural
Networks [27.29463801531576]
本稿では,正規直交深部線形ニューラルネットワークの学習のための収束解析について述べる。
その結果、隠れた層の増加が収束速度にどのように影響するかが明らかになった。
論文 参考訳(メタデータ) (2023-11-24T18:46:54Z) - How many Neurons do we need? A refined Analysis for Shallow Networks
trained with Gradient Descent [0.0]
ニューラル・タンジェント・カーネル・システムにおける2層ニューラルネットワークの一般化特性を解析した。
非パラメトリック回帰の枠組みにおいて、最小限最適であることが知られている収束の速い速度を導出する。
論文 参考訳(メタデータ) (2023-09-14T22:10:28Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Neural Networks with Sparse Activation Induced by Large Bias: Tighter Analysis with Bias-Generalized NTK [86.45209429863858]
ニューラル・タンジェント・カーネル(NTK)における一層ReLUネットワークのトレーニングについて検討した。
我々は、ニューラルネットワークが、テクティトビア一般化NTKと呼ばれる異なる制限カーネルを持っていることを示した。
ニューラルネットの様々な特性をこの新しいカーネルで研究する。
論文 参考訳(メタデータ) (2023-01-01T02:11:39Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
ニューラルネットワークのニューラルカーネル(NTK)に重みのランダムプルーニングが及ぼす影響について検討する。
特に、この研究は、完全に接続されたニューラルネットワークとそのランダムに切断されたバージョン間のNTKの等価性を確立する。
論文 参考訳(メタデータ) (2022-03-27T15:22:19Z) - When and why PINNs fail to train: A neural tangent kernel perspective [2.1485350418225244]
PINNのニューラルタンジェントカーネル(NTK)を導出し、適切な条件下では、無限幅極限でのトレーニング中に一定となる決定論的カーネルに収束することを示す。
学習誤差の総和に寄与する損失成分の収束率に顕著な差があることが判明した。
本研究では,NTKの固有値を用いて学習誤差の収束率を適応的に調整する勾配降下アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-28T23:44:56Z) - The Surprising Simplicity of the Early-Time Learning Dynamics of Neural
Networks [43.860358308049044]
研究において、これらの共通認識は、学習の初期段階において完全に誤りであることを示す。
この驚くべき単純さは、畳み込みアーキテクチャを持つより多くのレイヤを持つネットワークで持続することができる、と私たちは主張する。
論文 参考訳(メタデータ) (2020-06-25T17:42:49Z) - Feature Purification: How Adversarial Training Performs Robust Deep
Learning [66.05472746340142]
ニューラルネットワークのトレーニングプロセス中に隠れた重みに、特定の小さな密度の混合物が蓄積されることが、敵の例の存在の原因の1つであることを示す。
この原理を説明するために、CIFAR-10データセットの両実験と、ある自然な分類タスクに対して、ランダムな勾配勾配勾配を用いた2層ニューラルネットワークをトレーニングすることを証明する理論的結果を示す。
論文 参考訳(メタデータ) (2020-05-20T16:56:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。