Score-CDM: Score-Weighted Convolutional Diffusion Model for Multivariate Time Series Imputation
- URL: http://arxiv.org/abs/2405.13075v1
- Date: Tue, 21 May 2024 02:00:55 GMT
- Title: Score-CDM: Score-Weighted Convolutional Diffusion Model for Multivariate Time Series Imputation
- Authors: S. Zhang, S. Wang, H. Miao, H. Chen, C. Fan, J. Zhang,
- Abstract summary: Multivariant time series (MTS) data are usually incomplete in real scenarios.
We propose a Score-weighted Convolutional Diffusion Model (Score-CDM) for short, whose backbone consists of a Score-weighted Convolution Module (SCM) and an Adaptive Reception Module (ARM)
We conduct extensive evaluations on three real MTS datasets of different domains, and the result verifies the effectiveness of the proposed Score-CDM.
- Score: 0.035984704795350306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariant time series (MTS) data are usually incomplete in real scenarios, and imputing the incomplete MTS is practically important to facilitate various time series mining tasks. Recently, diffusion model-based MTS imputation methods have achieved promising results by utilizing CNN or attention mechanisms for temporal feature learning. However, it is hard to adaptively trade off the diverse effects of local and global temporal features by simply combining CNN and attention. To address this issue, we propose a Score-weighted Convolutional Diffusion Model (Score-CDM for short), whose backbone consists of a Score-weighted Convolution Module (SCM) and an Adaptive Reception Module (ARM). SCM adopts a score map to capture the global temporal features in the time domain, while ARM uses a Spectral2Time Window Block (S2TWB) to convolve the local time series data in the spectral domain. Benefiting from the time convolution properties of Fast Fourier Transformation, ARM can adaptively change the receptive field of the score map, and thus effectively balance the local and global temporal features. We conduct extensive evaluations on three real MTS datasets of different domains, and the result verifies the effectiveness of the proposed Score-CDM.
Related papers
- Accelerated Multi-Contrast MRI Reconstruction via Frequency and Spatial Mutual Learning [50.74383395813782]
We propose a novel Frequency and Spatial Mutual Learning Network (FSMNet) to explore global dependencies across different modalities.
The proposed FSMNet achieves state-of-the-art performance for the Multi-Contrast MR Reconstruction task with different acceleration factors.
arXiv Detail & Related papers (2024-09-21T12:02:47Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - MMR-Mamba: Multi-Modal MRI Reconstruction with Mamba and Spatial-Frequency Information Fusion [17.084083262801737]
We propose MMR-Mamba, a novel framework that thoroughly and efficiently integrates multi-modal features for MRI reconstruction.
Specifically, we first design a Target modality-guided Cross Mamba (TCM) module in the spatial domain.
Then, we introduce a Selective Frequency Fusion (SFF) module to efficiently integrate global information in the Fourier domain.
arXiv Detail & Related papers (2024-06-27T07:30:54Z) - DDLNet: Boosting Remote Sensing Change Detection with Dual-Domain Learning [5.932234366793244]
Change sensing (RSCD) aims to identify the changes of interest in a region by analyzing multi-temporal remote sensing images.
Existing RSCD methods are devoted to contextual modeling in the spatial domain to enhance the changes of interest.
We propose DNet, a RSCD network based on dual-domain learning (i.e. frequency and spatial domains)
arXiv Detail & Related papers (2024-06-19T14:54:09Z) - SMORE: Similarity-based Hyperdimensional Domain Adaptation for
Multi-Sensor Time Series Classification [17.052624039805856]
We propose SMORE, a novel resource-efficient domain adaptation (DA) algorithm for multi-sensor time series classification.
SMORE achieves on average 1.98% higher accuracy than state-of-the-art (SOTA) DNN-based DA algorithms with 18.81x faster training and 4.63x faster inference.
arXiv Detail & Related papers (2024-02-20T18:48:49Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - BolT: Fused Window Transformers for fMRI Time Series Analysis [0.0]
We present BolT, a blood-oxygen-level-dependent transformer, for analyzing fMRI time series.
To integrate information across windows, cross-window attention is computed between base tokens in each time window and fringe tokens from neighboring time windows.
Experiments on public fMRI datasets clearly illustrate the superior performance of BolT against state-of-the-art methods.
arXiv Detail & Related papers (2022-05-23T19:17:06Z) - Multi-Temporal Convolutions for Human Action Recognition in Videos [83.43682368129072]
We present a novel temporal-temporal convolution block that is capable of extracting at multiple resolutions.
The proposed blocks are lightweight and can be integrated into any 3D-CNN architecture.
arXiv Detail & Related papers (2020-11-08T10:40:26Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
We propose a pure spiking neural network (SNN) based computational model for precise sound localization in the noisy real-world environment.
We implement this algorithm in a real-time robotic system with a microphone array.
The experiment results show a mean error azimuth of 13 degrees, which surpasses the accuracy of the other biologically plausible neuromorphic approach for sound source localization.
arXiv Detail & Related papers (2020-07-07T08:22:56Z) - TAM: Temporal Adaptive Module for Video Recognition [60.83208364110288]
temporal adaptive module (bf TAM) generates video-specific temporal kernels based on its own feature map.
Experiments on Kinetics-400 and Something-Something datasets demonstrate that our TAM outperforms other temporal modeling methods consistently.
arXiv Detail & Related papers (2020-05-14T08:22:45Z) - TEA: Temporal Excitation and Aggregation for Action Recognition [31.076707274791957]
We propose a Temporal Excitation and Aggregation block, including a motion excitation module and a multiple temporal aggregation module.
For short-range motion modeling, the ME module calculates the feature-level temporal differences fromtemporal features.
The MTA module proposes to deform the local convolution to a group of sub-convolutions, forming a hierarchical residual architecture.
arXiv Detail & Related papers (2020-04-03T06:53:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.