論文の概要: DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation
- arxiv url: http://arxiv.org/abs/2405.15329v3
- Date: Sun, 08 Dec 2024 21:41:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:49:49.143953
- Title: DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation
- Title(参考訳): DnA-Eval:分解と集約による大規模言語モデル評価の強化
- Authors: Minzhi Li, Zhengyuan Liu, Shumin Deng, Shafiq Joty, Nancy F. Chen, Min-Yen Kan,
- Abstract要約: 大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
- 参考スコア(独自算出の注目度): 75.81096662788254
- License:
- Abstract: The acceleration of Large Language Models (LLMs) research has opened up new possibilities for evaluating generated texts. They serve as scalable and economical evaluators, but the question of how reliable these evaluators are has emerged as a crucial research question. Prior research efforts in the meta-evaluation of LLMs as judges limit the prompting of an LLM to a single use to obtain a final evaluation decision. They then compute the agreement between LLMs' outputs and human labels. This lacks interpretability in understanding the evaluation capability of LLMs. In light of this challenge, we propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices. Our experiments illustrate that it not only provides a more interpretable window for how well LLMs evaluate, but also leads to improvements up to 39.6% for different LLMs on a variety of meta-evaluation benchmarks.
- Abstract(参考訳): LLM(Large Language Models)研究の加速により、生成されたテキストを評価する新たな可能性が生まれた。
それらはスケーラブルで経済的な評価者として機能するが、これらの評価者がどの程度信頼できるかという問題は重要な研究課題として浮上している。
審査員としてのLCMのメタ評価における先行研究は、LCMの推進を単一の用途に制限し、最終的な評価決定を得る。
すると、LLMの出力と人間のラベルとの合意を計算する。
これはLLMの評価能力を理解する上での解釈可能性に欠ける。
この課題を踏まえて、我々は、評価プロセスを教育実践に基づいて異なる段階に分解するDecompose and Aggregateを提案する。
実験の結果,LLM の評価精度が向上するだけでなく,様々なメタ評価ベンチマークの異なる LLM に対して 39.6% の改善がもたらされた。
関連論文リスト
- Finding Blind Spots in Evaluator LLMs with Interpretable Checklists [23.381287828102995]
テキスト生成タスクにおける評価器として,Large Language Models (LLMs) の有効性を検討する。
我々は,4つの重要な能力を評価する上で,評価用LLMの習熟度を評価するための新しいフレームワークであるFBIを提案する。
論文 参考訳(メタデータ) (2024-06-19T10:59:48Z) - Large Language Models are Inconsistent and Biased Evaluators [2.136983452580014]
我々は,Large Language Models (LLMs) が親しみの偏りを示し,評価の歪んだ分布を示すため,評価値の偏りを示すことを示した。
また, LLM は不整合性評価器であり, テキスト品質の人間の理解に欠かせない相違を誘発する「サンプル間合意」が低く, 感度が高いことがわかった。
論文 参考訳(メタデータ) (2024-05-02T20:42:28Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
エージェント・ディベート支援型メタ評価フレームワークであるScaleEvalを提案する。
フレームワークのコードをGitHubで公開しています。
論文 参考訳(メタデータ) (2024-01-30T07:03:32Z) - PRE: A Peer Review Based Large Language Model Evaluator [14.585292530642603]
既存のパラダイムは、LLMの性能を評価するために、人間アノテーションまたはモデルベースの評価器のいずれかに依存している。
ピアレビュープロセスを通じてLLMを自動的に評価できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-28T12:33:14Z) - State of What Art? A Call for Multi-Prompt LLM Evaluation [28.307860675006545]
我々は650万インスタンスにわたる単発評価により得られた結果の脆さを包括的に分析した。
解析のロバスト性を改善するために,多様なプロンプトのセットを用いてLSMを評価することを提案する。
論文 参考訳(メタデータ) (2023-12-31T22:21:36Z) - Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization [132.25202059478065]
命令制御可能なテキスト要約の大規模言語モデル(LLM)をベンチマークする。
本研究は,LLMにおいて,命令制御可能なテキスト要約が依然として困難な課題であることを示す。
論文 参考訳(メタデータ) (2023-11-15T18:25:26Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
大規模言語モデル(LLM)は、学術と産業の両方で人気が高まっている。
本稿では,評価方法,評価方法,評価方法の3つの重要な側面に焦点をあてる。
論文 参考訳(メタデータ) (2023-07-06T16:28:35Z) - Can Large Language Models Be an Alternative to Human Evaluations? [80.81532239566992]
大規模言語モデル(LLM)は、タスク命令のみを提供する場合、目に見えないタスクに対して例外的な性能を示す。
LLM評価の結果は、専門家による評価の結果と一致していることを示す。
論文 参考訳(メタデータ) (2023-05-03T07:28:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。