論文の概要: A Planet Scale Spatial-Temporal Knowledge Graph Based On OpenStreetMap And H3 Grid
- arxiv url: http://arxiv.org/abs/2405.15375v1
- Date: Fri, 24 May 2024 09:22:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 15:11:32.795751
- Title: A Planet Scale Spatial-Temporal Knowledge Graph Based On OpenStreetMap And H3 Grid
- Title(参考訳): OpenStreetMapとH3 Gridに基づく惑星スケール空間時間知識グラフ
- Authors: Martin Böckling, Heiko Paulheim, Sarah Detzler,
- Abstract要約: 本稿では,OpenStreetMapデータの時空間知識グラフへの惑星スケール変換を支援するフレームワークを提案する。
OpenStreetMapデータに加えて、異なるOpenStreetMapを個々のh3グリッドセルに並べる。
- 参考スコア(独自算出の注目度): 1.6658912537684454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geospatial data plays a central role in modeling our world, for which OpenStreetMap (OSM) provides a rich source of such data. While often spatial data is represented in a tabular format, a graph based representation provides the possibility to interconnect entities which would have been separated in a tabular representation. We propose in our paper a framework which supports a planet scale transformation of OpenStreetMap data into a Spatial Temporal Knowledge Graph. In addition to OpenStreetMap data, we align the different OpenStreetMap geometries on individual h3 grid cells. We compare our constructed spatial knowledge graph to other spatial knowledge graphs and outline our contribution in this paper. As a basis for our computation, we use Apache Sedona as a computational framework for our Spatial Temporal Knowledge Graph construction
- Abstract(参考訳): 地理空間データ(Geospatial data)は、OpenStreetMap(OSM)がそのようなデータの豊富なソースを提供する世界モデリングにおいて中心的な役割を果たす。
しばしば空間データは表形式で表現されるが、グラフベースの表現は表形式で分離されたエンティティを相互に関連付けることができる。
本稿では,OpenStreetMapデータの時空間知識グラフへの惑星スケール変換を支援するフレームワークを提案する。
OpenStreetMapデータに加えて、異なるOpenStreetMapジオメトリを個々のh3グリッドセルに並べる。
構築した空間知識グラフと他の空間知識グラフを比較し,本論文における貢献について概説する。
計算の基盤として、時空間知識グラフ構築のための計算フレームワークとしてApache Sedonaを使用します。
関連論文リスト
- GraphEdit: Large Language Models for Graph Structure Learning [62.618818029177355]
グラフ構造学習(GSL)は、グラフ構造データ中のノード間の固有の依存関係と相互作用をキャプチャすることに焦点を当てている。
既存のGSL法は、監督信号として明示的なグラフ構造情報に大きく依存している。
グラフ構造化データの複雑なノード関係を学習するために,大規模言語モデル(LLM)を利用したグラフ編集を提案する。
論文 参考訳(メタデータ) (2024-02-23T08:29:42Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - SGAligner : 3D Scene Alignment with Scene Graphs [84.01002998166145]
3Dシーングラフの構築は、いくつかの具体的AIアプリケーションのためのシーン表現のトピックとして登場した。
オーバーラップ可能な3次元シーングラフのペアをゼロから部分的に整列させるという基本的な問題に着目する。
そこで我々はSGAlignerを提案する。SGAlignerは3次元シーングラフのペアを組合わせるための最初の方法であり、その組込みシナリオに対して堅牢である。
論文 参考訳(メタデータ) (2023-04-28T14:39:22Z) - highway2vec -- representing OpenStreetMap microregions with respect to
their road network characteristics [3.5960954499553512]
本稿では,道路インフラストラクチャ特性に関するマイクロリージョンの埋め込みを生成する手法を提案する。
私たちは、いくつかの都市のOpenStreetMapロードネットワークをベースとしています。
地図六角形が道路網にどの程度近いかを検出するベクトル表現を得た。
論文 参考訳(メタデータ) (2023-04-26T23:16:18Z) - Hierarchical Graph Structures for Congestion and ETA Prediction [0.0]
Traffic4castは、リアルタイムデータに基づいて時間的トラフィックを予測するための年次コンペティションである。
本論文では,OpenStreetMapデータから抽出した道路グラフトポロジを直接処理するニューラルネットワークを用いたアプローチを提案する。
我々のアーキテクチャは階層的なグラフ表現を組み込んで、グラフの鍵交点とそれらを接続する最短経路の間の情報の流れを改善することができる。
論文 参考訳(メタデータ) (2022-11-21T15:35:27Z) - PolarMOT: How Far Can Geometric Relations Take Us in 3D Multi-Object
Tracking? [62.997667081978825]
グラフのノードとして3D検出を符号化し、グラフエッジ上の局所極座標を用いてオブジェクト間の空間的および時間的対関係を符号化する。
これにより、グラフニューラルネットワークは、時間的および空間的相互作用を効果的に符号化することができる。
我々はnuScenesデータセット上に新しい最先端のデータセットを構築し、さらに重要なことに、私たちの手法であるPolarMOTが、異なる場所にわたって驚くほどよく一般化されていることを示す。
論文 参考訳(メタデータ) (2022-08-03T10:06:56Z) - GANmapper: geographical content filling [0.0]
本稿では,GAN(Generative Adversarial Network)を用いた空間データ生成手法を提案する。
当社のコントリビューションでは、粗大で広く利用可能な地理空間データを使用して、構築された環境のより細かいスケールで、あまり利用できない機能のマップを作成しています。
我々は、土地利用データと道路ネットワークを入力として、建物のフットプリントを生成し、世界中の9都市で実験を行う。
論文 参考訳(メタデータ) (2021-08-07T05:50:54Z) - Hippocampal Spatial Mapping As Fast Graph Learning [0.0]
海馬の形成は環境の空間地図を学習すると考えられており、多くのモデルにおいて、この学習プロセスは環境の各場所に感覚アソシエーションを形成する。
本研究では,環境部分のグラフ学習問題として空間マッピングにアプローチする。
海馬のエングラム細胞で表される学習グラフの各ノードは、実験的に観察されたニューロンタイプを用いて、側角膜皮質(LEC)の特徴情報と中角膜皮質(MEC)の位置情報に関連付けられている。
任意の情報をノードやエッジに関連付けるというこの中核的な考え方は本質的に空間的ではないので、この提案は高速である。
論文 参考訳(メタデータ) (2021-07-01T16:05:42Z) - COLOGNE: Coordinated Local Graph Neighborhood Sampling [1.6498361958317633]
グラフノードのような個別の未順序オブジェクトを実数値ベクトルで置き換えることは、グラフデータから学ぶための多くのアプローチの中心である。
ノードベクトル表現の座標がグラフノードであるような離散ノード埋め込みを学習する問題に対処する。
これにより、ノードにもともと存在するすべての属性が保存されているため、グラフの解釈可能な機械学習アルゴリズムを設計する扉が開く。
論文 参考訳(メタデータ) (2021-02-09T11:39:06Z) - node2coords: Graph Representation Learning with Wasserstein Barycenters [59.07120857271367]
グラフの表現学習アルゴリズムである node2coords を導入する。
低次元空間を同時に学習し、その空間内のノードを座標する。
実験の結果,node2coordで学習した表現は解釈可能であることがわかった。
論文 参考訳(メタデータ) (2020-07-31T13:14:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。