論文の概要: Grid-Based Projection of Spatial Data into Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2411.02309v1
- Date: Mon, 04 Nov 2024 17:35:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:34.626599
- Title: Grid-Based Projection of Spatial Data into Knowledge Graphs
- Title(参考訳): 知識グラフへの空間データのグリッドベース投影
- Authors: Amin Anjomshoaa, Hannah Schuster, Axel Polleres,
- Abstract要約: 実世界の実体の空間的特性を知識グラフにエンコードできることを示す。
本稿では,各街路セグメントを個別に把握する従来の手法から,知識グラフにおける街路ネットワークを表現する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 1.3723120574076129
- License:
- Abstract: The Spatial Knowledge Graphs (SKG) are experiencing growing adoption as a means to model real-world entities, proving especially invaluable in domains like crisis management and urban planning. Considering that RDF specifications offer limited support for effectively managing spatial information, it's common practice to include text-based serializations of geometrical features, such as polygons and lines, as string literals in knowledge graphs. Consequently, Spatial Knowledge Graphs (SKGs) often rely on geo-enabled RDF Stores capable of parsing, interpreting, and indexing such serializations. In this paper, we leverage grid cells as the foundational element of SKGs and demonstrate how efficiently the spatial characteristics of real-world entities and their attributes can be encoded within knowledge graphs. Furthermore, we introduce a novel methodology for representing street networks in knowledge graphs, diverging from the conventional practice of individually capturing each street segment. Instead, our approach is based on tessellating the street network using grid cells and creating a simplified representation that could be utilized for various routing and navigation tasks, solely relying on RDF specifications.
- Abstract(参考訳): 空間知識グラフ(SKG)は、現実世界の実体をモデル化する手段として採用されつつある。
RDF仕様は空間情報を効果的に管理するための限定的なサポートを提供するので、知識グラフの文字列リテラルとして多角形や線などの幾何学的特徴のテキストベースのシリアライズを含めるのが一般的である。
その結果、空間知識グラフ(SKG)は、多くの場合、そのようなシリアライゼーションを解析、解釈、インデックス化できる地理対応RDFストアに依存している。
本稿では,グリッドセルをSKGの基礎要素として活用し,実世界の実体とその属性の空間的特性を知識グラフ内にエンコードできることを実証する。
さらに,各街路セグメントを個別に把握する従来の手法から,知識グラフ内の街路ネットワークを表現するための新しい手法を提案する。
提案手法は,グリッドセルを用いた街路網のテセル化と,RDF仕様にのみ依存せず,様々なルーティングやナビゲーションタスクに使用できる簡易な表現を作成することに基づいている。
関連論文リスト
- FedSSP: Federated Graph Learning with Spectral Knowledge and Personalized Preference [31.796411806840087]
フェデレートされたグラフ学習(pFGL)は、プライバシーを損なうことなく、グラフニューラルネットワーク(GNN)の分散トレーニングを容易にする。
それまでのpFGLメソッドは、非ジェネリックな知識を全世界で誤って共有し、パーソナライズされたソリューションをローカルにカスタマイズできなかった。
提案するpFGLフレームワークであるFedSSPを提案する。
論文 参考訳(メタデータ) (2024-10-26T07:09:27Z) - Next Level Message-Passing with Hierarchical Support Graphs [20.706469085872516]
階層型サポートグラフ(Hierarchical Support Graph, HSG)は、特定のMPNN層に依存しない、グラフ内の情報フローを強化するフレームワークである。
本稿では, HSGの理論的解析を行い, その経験的性能について検討し, 仮想ノードで拡張した他の手法よりもHSGの方が優れていることを示す。
論文 参考訳(メタデータ) (2024-06-22T13:57:09Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Network Alignment with Transferable Graph Autoencoders [79.89704126746204]
本稿では,強力で堅牢なノード埋め込みを抽出するグラフオートエンコーダアーキテクチャを提案する。
生成した埋め込みがグラフの固有値と固有ベクトルと結びついていることを証明する。
提案フレームワークは転送学習とデータ拡張を利用して,大規模なネットワークアライメントを実現する。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
ニューラルネットワークは、勾配に基づくトレーニングの過程で、そのサイズとトポロジの両方を学習できるフレキシブルなセットアップを導入します。
結果として得られるネットワークは、特定の学習タスクとデータセットに合わせたグラフの構造を持つ。
論文 参考訳(メタデータ) (2020-06-22T12:46:44Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Knowledge Embedding Based Graph Convolutional Network [35.35776808660919]
本稿では,知識埋め込みに基づくグラフ畳み込みネットワーク(KE-GCN)という新しいフレームワークを提案する。
KE-GCNはグラフベースの信念伝播におけるグラフ畳み込みネットワーク(GCN)のパワーと高度な知識埋め込み手法の強みを組み合わせたものである。
理論的解析により、KE-GCNはいくつかのよく知られたGCN法のエレガントな統一を具体例として示している。
論文 参考訳(メタデータ) (2020-06-12T17:12:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。