論文の概要: Full-stack evaluation of Machine Learning inference workloads for RISC-V systems
- arxiv url: http://arxiv.org/abs/2405.15380v1
- Date: Fri, 24 May 2024 09:24:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 15:11:32.787822
- Title: Full-stack evaluation of Machine Learning inference workloads for RISC-V systems
- Title(参考訳): RISC-Vシステムのための機械学習推論ワークロードのフルスタック評価
- Authors: Debjyoti Bhattacharjee, Anmol, Tommaso Marinelli, Karan Pathak, Peter Kourzanov,
- Abstract要約: 本研究は,オープンソースのアーキテクチャシミュレータであるgem5を用いて,RISC-Vアーキテクチャ上での機械学習ワークロードの性能を評価する。
MLIR(Multi-Level Intermediate Representation)に基づいたオープンソースのコンパイルツールチェーンを活用することで、ディープラーニング推論ワークロードに特化したベンチマーク結果が提示される。
- 参考スコア(独自算出の注目度): 0.2621434923709917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Architectural simulators hold a vital role in RISC-V research, providing a crucial platform for workload evaluation without the need for costly physical prototypes. They serve as a dynamic environment for exploring innovative architectural concepts, enabling swift iteration and thorough analysis of performance metrics. As deep learning algorithms become increasingly pervasive, it is essential to benchmark new architectures with machine learning workloads. The diverse computational kernels used in deep learning algorithms highlight the necessity for a comprehensive compilation toolchain to map to target hardware platforms. This study evaluates the performance of a wide array of machine learning workloads on RISC-V architectures using gem5, an open-source architectural simulator. Leveraging an open-source compilation toolchain based on Multi-Level Intermediate Representation (MLIR), the research presents benchmarking results specifically focused on deep learning inference workloads. Additionally, the study sheds light on current limitations of gem5 when simulating RISC-V architectures, offering insights for future development and refinement.
- Abstract(参考訳): RISC-V研究において、建築シミュレータは重要な役割を担い、コストのかかる物理的プロトタイプを必要とせずに、ワークロード評価のための重要なプラットフォームを提供する。
これらは革新的なアーキテクチャ概念を探求するための動的環境として機能し、迅速なイテレーションとパフォーマンスメトリクスの徹底的な分析を可能にします。
ディープラーニングアルゴリズムがますます普及するにつれて、新しいアーキテクチャを機械学習のワークロードでベンチマークすることが不可欠である。
ディープラーニングアルゴリズムで使用される多種多様な計算カーネルは、対象とするハードウェアプラットフォームにマップする包括的なコンパイルツールチェーンの必要性を強調している。
本研究は,オープンソースのアーキテクチャシミュレータであるgem5を用いて,RISC-Vアーキテクチャ上での機械学習ワークロードの性能を評価する。
MLIR(Multi-Level Intermediate Representation)に基づいたオープンソースのコンパイルツールチェーンを活用することで、ディープラーニング推論ワークロードに特化したベンチマーク結果が提示される。
さらに、RISC-Vアーキテクチャをシミュレートする際のgem5の現在の限界に光を当て、将来の開発と改良のための洞察を提供する。
関連論文リスト
- Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
我々は、様々な計算プリミティブから構築された新しいハイブリッドアーキテクチャを特定し、テストする。
本研究では,大規模計算最適法則と新しい状態最適スケーリング法則解析を用いて,結果のアーキテクチャを実験的に検証する。
我々は,MAD合成法と計算-最適パープレキシティを相関させ,新しいアーキテクチャの正確な評価を可能にする。
論文 参考訳(メタデータ) (2024-03-26T16:33:12Z) - Comparison of Static Analysis Architecture Recovery Tools for
Microservice Applications [43.358953895199264]
マイクロサービスアプリケーションのための静的解析アーキテクチャ回復ツールを,マルチボーカルな文献レビューを通じて同定する。
次に、共通データセット上でそれらを実行し、アーキテクチャ回復における測定された有効性を比較する。
論文 参考訳(メタデータ) (2024-03-11T17:26:51Z) - Accelerating Computer Architecture Simulation through Machine Learning [0.07252027234425332]
本稿では,機械学習技術を活用したコンピュータアーキテクチャシミュレーションの高速化手法を提案する。
提案モデルは,アプリケーションの性能を予測するために,アプリケーション機能とマイクロアーキテクチャ機能の組み合わせを利用する。
アーキテクチャ探索において大きなスピードアップを提供する機械学習モデルを構築し,評価することで,我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-28T23:00:57Z) - A Survey of Serverless Machine Learning Model Inference [0.0]
ジェネレーティブAI、コンピュータビジョン、自然言語処理は、AIモデルをさまざまな製品に統合するきっかけとなった。
本調査は,大規模ディープラーニングサービスシステムにおける新たな課題と最適化の機会を要約し,分類することを目的としている。
論文 参考訳(メタデータ) (2023-11-22T18:46:05Z) - Serving Deep Learning Model in Relational Databases [72.72372281808694]
リレーショナルデータ上での深層学習(DL)モデルの実現は、様々な商業分野や科学分野において重要な要件となっている。
最先端のDL-Centricアーキテクチャは、DL計算を専用のDLフレームワークにオフロードします。
UDF-Centricアーキテクチャは、データベースシステム内の1つ以上のテンソル計算をユーザ定義関数(UDF)にカプセル化する。
potentialRelation-Centricアーキテクチャは、演算子による大規模テンソル計算を表現することを目的としている。
論文 参考訳(メタデータ) (2023-10-07T06:01:35Z) - POPNASv3: a Pareto-Optimal Neural Architecture Search Solution for Image
and Time Series Classification [8.190723030003804]
本稿では、異なるハードウェア環境と複数の分類タスクを対象とした逐次モデルベースNASアルゴリズムの第3版について述べる。
提案手法は,異なるタスクに適応するフレキシブルな構造とデータ処理パイプラインを維持しながら,大規模な検索空間内で競合するアーキテクチャを見つけることができる。
画像と時系列の分類データセットで実施された実験は、POPNASv3が多種多様な演算子を探索し、異なるシナリオで提供されるデータの種類に適した最適なアーキテクチャに収束できることを示す。
論文 参考訳(メタデータ) (2022-12-13T17:14:14Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
本稿では,いくつかの既存モデルを含む汎用的な検索強化機械学習フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
論文 参考訳(メタデータ) (2022-05-02T21:42:45Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z) - Flashlight: Enabling Innovation in Tools for Machine Learning [50.63188263773778]
私たちは、機械学習ツールやシステムの革新を促進するために構築されたオープンソースのライブラリであるFlashlightを紹介します。
Flashlightは、広く使われているライブラリを下流で活用し、機械学習とシステム研究者をより緊密に連携させる研究を可能にするツールだと考えています。
論文 参考訳(メタデータ) (2022-01-29T01:03:29Z) - Integrating Deep Learning in Domain Sciences at Exascale [2.241545093375334]
我々は,大規模HPCシステム上でディープラーニングモデルとアプリケーションを効率的に動作させるための既存パッケージの評価を行った。
本稿では,現在の大規模異種システムに対する新しい非同期並列化と最適化手法を提案する。
従来の計算集約型アプリケーションとデータ集約型アプリケーションをAIで拡張するための図表と潜在的なソリューションを提案する。
論文 参考訳(メタデータ) (2020-11-23T03:09:58Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
本稿では,シミュレーションで学習したモデルやポリシーを現実世界に伝達することを目的とした,様々なアルゴリズムの研究のためのベンチマークとフレームワークを提案する。
我々は、様々なアルゴリズムの性能に関する洞察を特徴付け、提供するために、広く知られたシミュレーション環境の実験を行う。
我々の分析は、この分野の実践者にとって有用であり、sim-to-realアルゴリズムの動作と主特性について、より深い選択をすることができる。
論文 参考訳(メタデータ) (2020-11-17T22:24:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。