AuthNet: Neural Network with Integrated Authentication Logic
- URL: http://arxiv.org/abs/2405.15426v1
- Date: Fri, 24 May 2024 10:44:22 GMT
- Title: AuthNet: Neural Network with Integrated Authentication Logic
- Authors: Yuling Cai, Fan Xiang, Guozhu Meng, Yinzhi Cao, Kai Chen,
- Abstract summary: We propose a native authentication mechanism, called AuthNet, which integrates authentication logic as part of the model.
AuthNet is compatible with any convolutional neural network, where our evaluations show that AuthNet successfully achieves the goal in rejecting unauthenticated users.
- Score: 19.56843040375779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model stealing, i.e., unauthorized access and exfiltration of deep learning models, has become one of the major threats. Proprietary models may be protected by access controls and encryption. However, in reality, these measures can be compromised due to system breaches, query-based model extraction or a disgruntled insider. Security hardening of neural networks is also suffering from limits, for example, model watermarking is passive, cannot prevent the occurrence of piracy and not robust against transformations. To this end, we propose a native authentication mechanism, called AuthNet, which integrates authentication logic as part of the model without any additional structures. Our key insight is to reuse redundant neurons with low activation and embed authentication bits in an intermediate layer, called a gate layer. Then, AuthNet fine-tunes the layers after the gate layer to embed authentication logic so that only inputs with special secret key can trigger the correct logic of AuthNet. It exhibits two intuitive advantages. It provides the last line of defense, i.e., even being exfiltrated, the model is not usable as the adversary cannot generate valid inputs without the key. Moreover, the authentication logic is difficult to inspect and identify given millions or billions of neurons in the model. We theoretically demonstrate the high sensitivity of AuthNet to the secret key and its high confusion for unauthorized samples. AuthNet is compatible with any convolutional neural network, where our extensive evaluations show that AuthNet successfully achieves the goal in rejecting unauthenticated users (whose average accuracy drops to 22.03%) with a trivial accuracy decrease (1.18% on average) for legitimate users, and is robust against model transformation and adaptive attacks.
Related papers
- DeepiSign-G: Generic Watermark to Stamp Hidden DNN Parameters for Self-contained Tracking [15.394110881491773]
DeepiSign-G is a versatile watermarking approach designed for comprehensive verification of leading DNN architectures, including CNNs and RNNs.
Unlike traditional hashing techniques, DeepiSign-G allows substantial metadata incorporation directly within the model, enabling detailed, self-contained tracking and verification.
We demonstrate DeepiSign-G's applicability across various architectures, including CNN models (VGG, ResNets, DenseNet) and RNNs (Text sentiment classifiers)
arXiv Detail & Related papers (2024-07-01T13:15:38Z) - Who Leaked the Model? Tracking IP Infringers in Accountable Federated Learning [51.26221422507554]
Federated learning (FL) is an effective collaborative learning framework to coordinate data and computation resources from massive and distributed clients in training.
Such collaboration results in non-trivial intellectual property (IP) represented by the model parameters that should be protected and shared by the whole party rather than an individual user.
To block such IP leakage, it is essential to make the IP identifiable in the shared model and locate the anonymous infringer who first leaks it.
We propose Decodable Unique Watermarking (DUW) for complying with the requirements of accountable FL.
arXiv Detail & Related papers (2023-12-06T00:47:55Z) - FreeEagle: Detecting Complex Neural Trojans in Data-Free Cases [50.065022493142116]
Trojan attack on deep neural networks, also known as backdoor attack, is a typical threat to artificial intelligence.
FreeEagle is the first data-free backdoor detection method that can effectively detect complex backdoor attacks.
arXiv Detail & Related papers (2023-02-28T11:31:29Z) - An anomaly detection approach for backdoored neural networks: face
recognition as a case study [77.92020418343022]
We propose a novel backdoored network detection method based on the principle of anomaly detection.
We test our method on a novel dataset of backdoored networks and report detectability results with perfect scores.
arXiv Detail & Related papers (2022-08-22T12:14:13Z) - Neural network fragile watermarking with no model performance
degradation [28.68910526223425]
We propose a novel neural network fragile watermarking with no model performance degradation.
Experiments show that the proposed method can effectively detect model malicious fine-tuning with no model performance degradation.
arXiv Detail & Related papers (2022-08-16T07:55:20Z) - PCPT and ACPT: Copyright Protection and Traceability Scheme for DNN
Models [13.043683635373213]
Deep neural networks (DNNs) have achieved tremendous success in artificial intelligence (AI) fields.
DNN models can be easily illegally copied, redistributed, or abused by criminals.
arXiv Detail & Related papers (2022-06-06T12:12:47Z) - Reversible Watermarking in Deep Convolutional Neural Networks for
Integrity Authentication [78.165255859254]
We propose a reversible watermarking algorithm for integrity authentication.
The influence of embedding reversible watermarking on the classification performance is less than 0.5%.
At the same time, the integrity of the model can be verified by applying the reversible watermarking.
arXiv Detail & Related papers (2021-04-09T09:32:21Z) - Automatically Lock Your Neural Networks When You're Away [5.153873824423363]
We propose Model-Lock (M-LOCK) to realize an end-to-end neural network with local dynamic access control.
Three kinds of model training strategy are essential to achieve the tremendous performance divergence between certified and suspect input in one neural network.
arXiv Detail & Related papers (2021-03-15T15:47:54Z) - Deep Model Intellectual Property Protection via Deep Watermarking [122.87871873450014]
Deep neural networks are exposed to serious IP infringement risks.
Given a target deep model, if the attacker knows its full information, it can be easily stolen by fine-tuning.
We propose a new model watermarking framework for protecting deep networks trained for low-level computer vision or image processing tasks.
arXiv Detail & Related papers (2021-03-08T18:58:21Z) - DeepiSign: Invisible Fragile Watermark to Protect the Integrityand
Authenticity of CNN [37.98139322456872]
We propose a self-contained tamper-proofing method, called DeepiSign, to ensure the integrity and authenticity of CNN models.
DeepiSign applies the idea of fragile invisible watermarking to securely embed a secret and its hash value into a CNN model.
Our theoretical analysis shows that DeepiSign can hide up to 1KB secret in each layer with minimal loss of the model's accuracy.
arXiv Detail & Related papers (2021-01-12T06:42:45Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.