FedCal: Achieving Local and Global Calibration in Federated Learning via Aggregated Parameterized Scaler
- URL: http://arxiv.org/abs/2405.15458v2
- Date: Tue, 4 Jun 2024 02:36:14 GMT
- Title: FedCal: Achieving Local and Global Calibration in Federated Learning via Aggregated Parameterized Scaler
- Authors: Hongyi Peng, Han Yu, Xiaoli Tang, Xiaoxiao Li,
- Abstract summary: Federated learning (FedCal) uses client-specific scalers for local and global calibration.
Experiments demonstrate FedCal significantly outperforms the best-performing baseline, reducing global calibration error by 47.66% on average.
- Score: 29.93307421620845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) enables collaborative machine learning across distributed data owners, but data heterogeneity poses a challenge for model calibration. While prior work focused on improving accuracy for non-iid data, calibration remains under-explored. This study reveals existing FL aggregation approaches lead to sub-optimal calibration, and theoretical analysis shows despite constraining variance in clients' label distributions, global calibration error is still asymptotically lower bounded. To address this, we propose a novel Federated Calibration (FedCal) approach, emphasizing both local and global calibration. It leverages client-specific scalers for local calibration to effectively correct output misalignment without sacrificing prediction accuracy. These scalers are then aggregated via weight averaging to generate a global scaler, minimizing the global calibration error. Extensive experiments demonstrate FedCal significantly outperforms the best-performing baseline, reducing global calibration error by 47.66% on average.
Related papers
- Feature Clipping for Uncertainty Calibration [24.465567005078135]
Modern deep neural networks (DNNs) often suffer from overconfidence, leading to miscalibration.
We propose a novel post-hoc calibration method called feature clipping (FC) to address this issue.
FC involves clipping feature values to a specified threshold, effectively increasing entropy in high calibration error samples.
arXiv Detail & Related papers (2024-10-16T06:44:35Z) - ForeCal: Random Forest-based Calibration for DNNs [0.0]
We propose ForeCal, a novel post-hoc calibration algorithm based on Random forests.
ForeCal exploits two unique properties of Random forests: the ability to enforce weak monotonicity and range-preservation.
We show that ForeCal outperforms existing methods in terms of Expected Error(ECE) with minimal impact on the discriminative power of the base as measured by AUC.
arXiv Detail & Related papers (2024-09-04T04:56:41Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
We introduce kernel-based calibration metrics that unify and generalize popular forms of calibration for both classification and regression.
These metrics admit differentiable sample estimates, making it easy to incorporate a calibration objective into empirical risk minimization.
We provide intuitive mechanisms to tailor calibration metrics to a decision task, and enforce accurate loss estimation and no regret decisions.
arXiv Detail & Related papers (2023-10-31T06:19:40Z) - PseudoCal: A Source-Free Approach to Unsupervised Uncertainty
Calibration in Domain Adaptation [87.69789891809562]
Unsupervised domain adaptation (UDA) has witnessed remarkable advancements in improving the accuracy of models for unlabeled target domains.
The calibration of predictive uncertainty in the target domain, a crucial aspect of the safe deployment of UDA models, has received limited attention.
We propose PseudoCal, a source-free calibration method that exclusively relies on unlabeled target data.
arXiv Detail & Related papers (2023-07-14T17:21:41Z) - A Closer Look at the Calibration of Differentially Private Learners [33.715727551832785]
We study the calibration of classifiers trained with differentially private descent gradient (DP-SGD)
Our analysis identifies per-example gradient clipping in DP-SGD as a major cause of miscalibration.
We show that differentially private variants of post-processing calibration methods such as temperature scaling and Platt scaling are surprisingly effective.
arXiv Detail & Related papers (2022-10-15T10:16:18Z) - Federated Learning with Label Distribution Skew via Logits Calibration [26.98248192651355]
In this paper, we investigate the label distribution skew in FL, where the distribution of labels varies across clients.
We propose FedLC, which calibrates the logits before softmax cross-entropy according to the probability of occurrence of each class.
Experiments on federated datasets and real-world datasets demonstrate that FedLC leads to a more accurate global model.
arXiv Detail & Related papers (2022-09-01T02:56:39Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
Post-hoc approach to compensate for neural networks being wrong is to perform temperature scaling.
We propose to predict a different temperature value for each input, allowing us to adjust the mismatch between confidence and accuracy.
We test our method on the ResNet50 and WideResNet28-10 architectures using the CIFAR10/100 and Tiny-ImageNet datasets.
arXiv Detail & Related papers (2022-07-13T14:13:49Z) - Localized Calibration: Metrics and Recalibration [133.07044916594361]
We propose a fine-grained calibration metric that spans the gap between fully global and fully individualized calibration.
We then introduce a localized recalibration method, LoRe, that improves the LCE better than existing recalibration methods.
arXiv Detail & Related papers (2021-02-22T07:22:12Z) - Uncertainty Quantification and Deep Ensembles [79.4957965474334]
We show that deep-ensembles do not necessarily lead to improved calibration properties.
We show that standard ensembling methods, when used in conjunction with modern techniques such as mixup regularization, can lead to less calibrated models.
This text examines the interplay between three of the most simple and commonly used approaches to leverage deep learning when data is scarce.
arXiv Detail & Related papers (2020-07-17T07:32:24Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
We introduce the problem of calibration under domain shift and propose an importance sampling based approach to address it.
We evaluate and discuss the efficacy of our method on both real-world datasets and synthetic datasets.
arXiv Detail & Related papers (2020-06-29T21:50:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.