論文の概要: Multimodal Object Detection via Probabilistic a priori Information Integration
- arxiv url: http://arxiv.org/abs/2405.15596v1
- Date: Fri, 24 May 2024 14:28:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 13:40:24.447225
- Title: Multimodal Object Detection via Probabilistic a priori Information Integration
- Title(参考訳): 確率的事前情報統合によるマルチモーダル物体検出
- Authors: Hafsa El Hafyani, Bastien Pasdeloup, Camille Yver, Pierre Romenteau,
- Abstract要約: マルチモーダル物体検出はリモートセンシングにおいて有望であることを示す。
本稿では,対象対象物を含む1つのモダリティのみを含むマルチモーダル物体検出について検討する。
本稿では,文脈のバイナリ情報を確率マップに変換することでアライメント問題を解決することを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal object detection has shown promise in remote sensing. However, multimodal data frequently encounter the problem of low-quality, wherein the modalities lack strict cell-to-cell alignment, leading to mismatch between different modalities. In this paper, we investigate multimodal object detection where only one modality contains the target object and the others provide crucial contextual information. We propose to resolve the alignment problem by converting the contextual binary information into probability maps. We then propose an early fusion architecture that we validate with extensive experiments on the DOTA dataset.
- Abstract(参考訳): マルチモーダル物体検出はリモートセンシングにおいて有望であることを示す。
しかし、マルチモーダルデータはしばしば低品質の問題に遭遇し、モダリティは厳密な細胞間アライメントを欠き、異なるモダリティ間のミスマッチを引き起こす。
本稿では,対象対象物を含むモダリティが1つだけであり,他が重要な文脈情報を提供するマルチモーダルオブジェクト検出について検討する。
本稿では,文脈のバイナリ情報を確率マップに変換することでアライメント問題を解決することを提案する。
次に、DOTAデータセット上で広範囲な実験を行い、検証する早期融合アーキテクチャを提案する。
関連論文リスト
- Detecting Misinformation in Multimedia Content through Cross-Modal Entity Consistency: A Dual Learning Approach [10.376378437321437]
クロスモーダルなエンティティの整合性を利用して、ビデオコンテンツから誤情報を検出するためのマルチメディア誤情報検出フレームワークを提案する。
以上の結果から,MultiMDは最先端のベースラインモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-08-16T16:14:36Z) - Multimodal Fusion on Low-quality Data: A Comprehensive Survey [110.22752954128738]
本稿では,野生におけるマルチモーダル核融合の共通課題と最近の進歩について考察する。
低品質データ上でのマルチモーダル融合で直面する4つの主な課題を同定する。
この新たな分類によって、研究者はフィールドの状態を理解し、いくつかの潜在的な方向を特定することができる。
論文 参考訳(メタデータ) (2024-04-27T07:22:28Z) - PoIFusion: Multi-Modal 3D Object Detection via Fusion at Points of Interest [65.48057241587398]
PoIFusionは、関心点(PoIs)におけるRGBイメージとLiDARポイントクラウドに関する情報を融合するフレームワークである。
提案手法は,各モダリティの視点を維持し,計算にやさしいプロジェクションと計算によってマルチモーダル特徴を得る。
我々はnuScenesとArgoverse2データセットについて広範囲に実験を行い、我々のアプローチを評価した。
論文 参考訳(メタデータ) (2024-03-14T09:28:12Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
我々は、最初の統一型マルチモーダル3Dオブジェクト検出ベンチマークMM-Omni3Dを構築し、上記のモノクロ検出器をマルチモーダルバージョンに拡張する。
設計した単分子・多モード検出器をそれぞれUniMODEとMM-UniMODEと命名した。
論文 参考訳(メタデータ) (2024-02-28T18:59:31Z) - Detecting and Grounding Multi-Modal Media Manipulation and Beyond [93.08116982163804]
マルチモーダルフェイクメディア(DGM4)の新たな研究課題について述べる。
DGM4は、マルチモーダルメディアの真正性を検出するだけでなく、操作されたコンテンツも検出することを目的としている。
本稿では,異なるモーダル間のきめ細かい相互作用を完全に捉えるために,新しい階層型マルチモーダルマニピュレーションrEasoning tRansformer(HAMMER)を提案する。
論文 参考訳(メタデータ) (2023-09-25T15:05:46Z) - Multimodal Object Detection in Remote Sensing [2.8698937226234795]
リモートセンシングにおけるマルチモーダル物体検出法の比較を行った。
評価に適したマルチモーダルデータセットを調査し,今後の方向性について考察する。
論文 参考訳(メタデータ) (2023-07-13T12:37:14Z) - Read, Look or Listen? What's Needed for Solving a Multimodal Dataset [7.0430001782867]
マルチモーダル・データセットを解析するための2段階の手法を提案する。これは、人間のアノテーションの小さなシードを利用して、各マルチモーダル・インスタンスをその処理に必要なモダリティにマッピングする。
ビデオ質問応答データセットであるTVQAに我々のアプローチを適用し、ほとんどの質問が特定のモダリティに対して実質的な偏見を伴わずに単一のモダリティで答えられることを発見した。
我々は、MERLOT Reserveを分析し、テキストや音声よりも画像に基づく質問に苦しむが、聴覚話者の識別にも苦しむことを発見した。
論文 参考訳(メタデータ) (2023-07-06T08:02:45Z) - Informative Data Selection with Uncertainty for Multi-modal Object
Detection [25.602915381482468]
普遍的不確実性を考慮したマルチモーダル融合モデルを提案する。
本モデルでは,融合時のランダム性を低減し,信頼性の高い出力を生成する。
我々の核融合モデルでは、ガウス、運動のぼやけ、凍土のような激しいノイズ干渉に対してわずかにしか耐えられないことが証明されている。
論文 参考訳(メタデータ) (2023-04-23T16:36:13Z) - Weakly Aligned Feature Fusion for Multimodal Object Detection [52.15436349488198]
マルチモーダルデータはしばしば位置ずれの問題に悩まされます。つまり、イメージペアは厳密に一致していません。
この問題により、マルチモーダルな特徴を融合させることが難しくなり、畳み込みニューラルネットワーク(CNN)のトレーニングが難解になる。
本稿では、位置ずれ問題に対処するために、アライメント領域CNN(AR-CNN)と呼ばれる汎用マルチモーダル検出器を提案する。
論文 参考訳(メタデータ) (2022-04-21T02:35:23Z) - Multimodal Object Detection via Bayesian Fusion [59.31437166291557]
我々は、RGBとサーマルカメラでマルチモーダルオブジェクト検出を研究します。後者は照明不良下ではるかに強力なオブジェクトシグネチャを提供することができます。
我々の重要な貢献は、異なるモードのボックス検出を融合する非学習遅延融合法である。
このアプローチは、整列(KAIST)と非整列(FLIR)のマルチモーダルセンサーデータを含むベンチマークに適用されます。
論文 参考訳(メタデータ) (2021-04-07T04:03:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。