Nonlinear denoising score matching for enhanced learning of structured distributions
- URL: http://arxiv.org/abs/2405.15625v1
- Date: Fri, 24 May 2024 15:14:23 GMT
- Title: Nonlinear denoising score matching for enhanced learning of structured distributions
- Authors: Jeremiah Birrell, Markos A. Katsoulakis, Luc Rey-Bellet, Benjamin Zhang, Wei Zhu,
- Abstract summary: Generalizing to a nonlinear drift allows for additional structure to be incorporated into the dynamics.
We demonstrate the effectiveness of this method on several examples.
- Score: 12.428200977408817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel method for training score-based generative models which uses nonlinear noising dynamics to improve learning of structured distributions. Generalizing to a nonlinear drift allows for additional structure to be incorporated into the dynamics, thus making the training better adapted to the data, e.g., in the case of multimodality or (approximate) symmetries. Such structure can be obtained from the data by an inexpensive preprocessing step. The nonlinear dynamics introduces new challenges into training which we address in two ways: 1) we develop a new nonlinear denoising score matching (NDSM) method, 2) we introduce neural control variates in order to reduce the variance of the NDSM training objective. We demonstrate the effectiveness of this method on several examples: a) a collection of low-dimensional examples, motivated by clustering in latent space, b) high-dimensional images, addressing issues with mode collapse, small training sets, and approximate symmetries, the latter being a challenge for methods based on equivariant neural networks, which require exact symmetries.
Related papers
- Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems [2.170477444239546]
We develop an approach that balances these two objectives: the Gaussian Process Switching Linear Dynamical System (gpSLDS)
Our method builds on previous work modeling the latent state evolution via a differential equation whose nonlinear dynamics are described by a Gaussian process (GP-SDEs)
Our approach resolves key limitations of the rSLDS such as artifactual oscillations in dynamics near discrete state boundaries, while also providing posterior uncertainty estimates of the dynamics.
arXiv Detail & Related papers (2024-07-19T15:32:15Z) - Recurrent Deep Kernel Learning of Dynamical Systems [0.5825410941577593]
Digital twins require computationally-efficient reduced-order models (ROMs) that can accurately describe complex dynamics of physical assets.
We propose a data-driven, non-intrusive deep kernel learning (SVDKL) method to discover low-dimensional latent spaces from data.
Results show that our framework is capable of (i) denoising and reconstructing measurements, (ii) learning compact representations of system states, (iii) predicting system evolution in low-dimensional latent spaces, and (iv) modeling uncertainties.
arXiv Detail & Related papers (2024-05-30T07:49:02Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Harnessing Orthogonality to Train Low-Rank Neural Networks [0.07538606213726905]
This study explores the learning dynamics of neural networks by analyzing the singular value decomposition (SVD) of their weights throughout training.
We introduce Orthogonality-Informed Adaptive Low-Rank (OIALR) training, a novel training method exploiting the intrinsic orthogonality of neural networks.
arXiv Detail & Related papers (2024-01-16T17:07:22Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Dynamical Hyperspectral Unmixing with Variational Recurrent Neural
Networks [25.051918587650636]
Multitemporal hyperspectral unmixing (MTHU) is a fundamental tool in the analysis of hyperspectral image sequences.
We propose an unsupervised MTHU algorithm based on variational recurrent neural networks.
arXiv Detail & Related papers (2023-03-19T04:51:34Z) - Non-linear manifold ROM with Convolutional Autoencoders and Reduced
Over-Collocation method [0.0]
Non-affine parametric dependencies, nonlinearities and advection-dominated regimes of the model of interest can result in a slow Kolmogorov n-width decay.
We implement the non-linear manifold method introduced by Carlberg et al [37] with hyper-reduction achieved through reduced over-collocation and teacher-student training of a reduced decoder.
We test the methodology on a 2d non-linear conservation law and a 2d shallow water models, and compare the results obtained with a purely data-driven method for which the dynamics is evolved in time with a long-short term memory network
arXiv Detail & Related papers (2022-03-01T11:16:50Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
We propose a dependable learning based on Cogradient Descent (CoGD) algorithm to address the bilinear optimization problem.
CoGD is introduced to solve bilinear problems when one variable is with sparsity constraint.
It can also be used to decompose the association of features and weights, which further generalizes our method to better train convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-06-20T04:28:20Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
We propose a neural dynamic mode decomposition for estimating a lift function based on neural networks.
With our proposed method, the forecast error is backpropagated through the neural networks and the spectral decomposition.
Our experiments demonstrate the effectiveness of our proposed method in terms of eigenvalue estimation and forecast performance.
arXiv Detail & Related papers (2020-12-11T08:34:26Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.