Efficient identification of linear, parameter-varying, and nonlinear systems with noise models
- URL: http://arxiv.org/abs/2504.11982v1
- Date: Wed, 16 Apr 2025 11:23:30 GMT
- Title: Efficient identification of linear, parameter-varying, and nonlinear systems with noise models
- Authors: Alberto Bemporad, Roland Tóth,
- Abstract summary: We present a general system identification procedure capable of estimating a broad spectrum of state-space dynamical models.<n>We show that for this general class of model structures, the model dynamics can be separated into a deterministic process and a noise part.<n>We parameterize the involved nonlinear functional relations by means of artificial neural-networks (ANNs)
- Score: 1.6385815610837167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a general system identification procedure capable of estimating of a broad spectrum of state-space dynamical models, including linear time-invariant (LTI), linear parameter-varying} (LPV), and nonlinear (NL) dynamics, along with rather general classes of noise models. Similar to the LTI case, we show that for this general class of model structures, including the NL case, the model dynamics can be separated into a deterministic process and a stochastic noise part, allowing to seamlessly tune the complexity of the combined model both in terms of nonlinearity and noise modeling. We parameterize the involved nonlinear functional relations by means of artificial neural-networks (ANNs), although alternative parametric nonlinear mappings can also be used. To estimate the resulting model structures, we optimize a prediction-error-based criterion using an efficient combination of a constrained quasi-Newton approach and automatic differentiation, achieving training times in the order of seconds compared to existing state-of-the-art ANN methods which may require hours for models of similar complexity. We formally establish the consistency guarantees for the proposed approach and demonstrate its superior estimation accuracy and computational efficiency on several benchmark LTI, LPV, and NL system identification problems.
Related papers
- Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.
Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.
Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks [20.12750360095627]
We develop compositional learning algorithms for coupled dynamical systems.<n>We use neural networks to parametrize unknown terms in differential and algebraic components of a port-Hamiltonian DAE.<n>We train individual N-PHDAE models for separate grid components, before coupling them to accurately predict the behavior of larger-scale networks.
arXiv Detail & Related papers (2024-12-15T15:13:11Z) - Recurrent Stochastic Configuration Networks with Hybrid Regularization for Nonlinear Dynamics Modelling [3.8719670789415925]
Recurrent configuration networks (RSCNs) have shown great potential in modelling nonlinear dynamic systems with uncertainties.<n>This paper presents an RSCN with hybrid regularization to enhance both the learning capacity and generalization performance of the network.
arXiv Detail & Related papers (2024-11-26T03:06:39Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Efficient Interpretable Nonlinear Modeling for Multiple Time Series [5.448070998907116]
This paper proposes an efficient nonlinear modeling approach for multiple time series.
It incorporates nonlinear interactions among different time-series variables.
Experimental results show that the proposed algorithm improves the identification of the support of the VAR coefficients in a parsimonious manner.
arXiv Detail & Related papers (2023-09-29T11:42:59Z) - Active-Learning-Driven Surrogate Modeling for Efficient Simulation of
Parametric Nonlinear Systems [0.0]
In absence of governing equations, we need to construct the parametric reduced-order surrogate model in a non-intrusive fashion.
Our work provides a non-intrusive optimality criterion to efficiently populate the parameter snapshots.
We propose an active-learning-driven surrogate model using kernel-based shallow neural networks.
arXiv Detail & Related papers (2023-06-09T18:01:14Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Compositional Modeling of Nonlinear Dynamical Systems with ODE-based
Random Features [0.0]
We present a novel, domain-agnostic approach to tackling this problem.
We use compositions of physics-informed random features, derived from ordinary differential equations.
We find that our approach achieves comparable performance to a number of other probabilistic models on benchmark regression tasks.
arXiv Detail & Related papers (2021-06-10T17:55:13Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.