論文の概要: M4U: Evaluating Multilingual Understanding and Reasoning for Large Multimodal Models
- arxiv url: http://arxiv.org/abs/2405.15638v2
- Date: Fri, 25 Apr 2025 04:37:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:51.772564
- Title: M4U: Evaluating Multilingual Understanding and Reasoning for Large Multimodal Models
- Title(参考訳): M4U:大規模マルチモーダルモデルの多言語理解と推論の評価
- Authors: Hongyu Wang, Jiayu Xu, Senwei Xie, Ruiping Wang, Jialin Li, Zhaojie Xie, Bin Zhang, Chuyan Xiong, Xilin Chen,
- Abstract要約: M4Uは多分野多言語マルチモーダル理解と推論の能力を評価するための新しいベンチマークである。
M4Uには、科学、工学、医療の分野で6つの言語で64の分野をカバーする10kのサンプルが含まれている。
M4Uを用いて,LMM(Large Multimodal Model)とLLM(Large Language Model)を外部ツールで広範囲に評価する。
- 参考スコア(独自算出の注目度): 27.18427414844769
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multilingual capability is an essential aspect for large multimodal models, since they are usually deployed across various countries and languages. However, most existing benchmarks for multilingual multimodal reasoning struggle to differentiate between models of varying performance; even language models without visual capabilities can easily achieve high scores. This leaves a comprehensive evaluation of leading multilingual multimodal models largely unexplored. In this work, we introduce M4U, a novel and challenging benchmark for assessing the capability of multi-discipline multilingual multimodal understanding and reasoning. M4U contains 10k samples covering 64 disciplines across 16 subfields in Science, Engineering, and Healthcare in six languages. Using M4U, we conduct extensive evaluations of leading Large Multimodal Models (LMMs) and Large Language Models (LLMs) with external tools. The evaluation results demonstrate that the state-of-the-art model, GPT-4o, achieves only 47.6% average accuracy on M4U. Additionally, we observe that the leading LMMs exhibit significant language preferences. Our in-depth analysis indicates that leading LMMs, including GPT-4o, struggle to perform reasoning using multilingual information present in both visual and textual context. Specifically, they suffer performance degradation when prompted with cross-lingual multimodal questions. Our code and dataset is public available.
- Abstract(参考訳): 言語機能は通常、様々な国や言語にまたがって展開されるため、大規模なマルチモーダルモデルにとって欠かせない側面である。
しかし、既存の多言語マルチモーダル推論のベンチマークでは、様々な性能のモデル間の区別が困難であり、視覚能力のない言語モデルでさえ、高いスコアを容易に得ることができる。
このことは、主要な多言語マルチモーダルモデルの包括的評価をほとんど探索されていないまま残している。
本稿では,多分野多言語マルチモーダル理解と推論の能力を評価するための,新しい,挑戦的なベンチマークであるM4Uを紹介する。
M4Uには、科学、工学、医療の分野で6つの言語で64の分野をカバーする10kのサンプルが含まれている。
M4Uを用いて,LMM(Large Multimodal Model)とLLM(Large Language Model)を外部ツールで広範囲に評価する。
その結果,M4Uの平均精度は47.6%に過ぎなかった。
さらに,先行するLMMが言語嗜好に有意な影響を与えていることも確認した。
GPT-4oを含む先行LMMは、視覚的・テキスト的両方の文脈に存在する多言語情報を用いて推論を行うのに苦労していることを示す。
具体的には、言語横断のマルチモーダルな質問によって、パフォーマンスの劣化に悩まされる。
コードとデータセットは公開されています。
関連論文リスト
- Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark [35.654523541347174]
MMLAは、ステージ化されたシナリオと実世界のシナリオの両方から引き出された61K以上のマルチモーダル発話で構成されている。
我々は、ゼロショット推論、教師付き微調整、命令チューニングの3つの手法を用いて、LLMとMLLMの8つの主流ブランチを評価した。
実験の結果、微調整されたモデルでさえ約60%の精度しか達成できず、複雑な人間の言語を理解する上での現在のMLLMの限界が強調されている。
論文 参考訳(メタデータ) (2025-04-23T05:25:13Z) - M-Prometheus: A Suite of Open Multilingual LLM Judges [64.22940792713713]
M-Prometheusは,多言語出力の直接評価とペア比較フィードバックを両立できるオープンウェイトLLM判定器のスイートである。
M-Prometheusモデルは、20以上の言語にまたがる多言語報酬ベンチマークや、4つの言語対をカバーする文語機械翻訳(MT)評価において、最先端のLLM判事より優れている。
論文 参考訳(メタデータ) (2025-04-07T11:37:26Z) - MMLU-ProX: A Multilingual Benchmark for Advanced Large Language Model Evaluation [60.52580061637301]
MMLU-ProXは、言語毎に約11,829の質問を持つ、13の型的多様言語をカバーする包括的なベンチマークである。
5ショットチェーン(CoT)とゼロショットプロンプト戦略を用いて25の最先端の大規模言語モデル(LLM)を評価し,言語的・文化的境界を越えてその性能を解析した。
我々の実験は、ハイリソース言語から低リソース言語への一貫したパフォーマンス劣化を示し、最高のモデルは英語で70%以上の精度を達成しているが、Swahiliのような言語では40%程度にまで低下している。
論文 参考訳(メタデータ) (2025-03-13T15:59:20Z) - Protecting Privacy in Multimodal Large Language Models with MLLMU-Bench [17.73279547506514]
マルチモーダル・ラージ・モデル・アンラーニングベンチマーク(MLLMU-Bench)は,マルチモーダル・マシン・アンラーニングの理解を深めるための新しいベンチマークである。
MLLMU-Benchは500の架空のプロファイルと153のプロフィールで構成され、各プロファイルは14以上のカスタマイズされた質問応答ペアで構成され、マルチモーダル(画像+テキスト)とユニモーダル(テキスト)の両方の観点から評価される。
意外なことに、我々の実験では、ユニモーダル・アンラーニングのアルゴリズムは生成タスクやクローズタスクに優れており、マルチモーダル・アンラーニングのアプローチはマルチモーダル入力による分類タスクにおいてより優れている。
論文 参考訳(メタデータ) (2024-10-29T15:07:23Z) - CAMEL-Bench: A Comprehensive Arabic LMM Benchmark [10.20074702234283]
我々は,4億人以上の話者を対象とするアラビア語の総合的LMM評価ベンチマークを開発した。
提案するベンチマークは,マルチイメージ理解,複雑な視覚知覚,手書き文書理解,ビデオ理解,医用画像,植物病,リモートセンシングによる土地利用理解を含む8つのサブドメインと38のサブドメインから構成される。
論文 参考訳(メタデータ) (2024-10-24T17:59:38Z) - Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following [51.18383180774354]
Multi-IFは,大規模言語モデルの習熟度を多元的および多言語的指示に従って評価するための新しいベンチマークである。
Multi-IF 上での14の最先端 LLM の評価結果から,既存のベンチマークよりもはるかに難しい課題であることが判明した。
非ラテン文字(ヒンディー語、ロシア語、中国語)を持つ言語は一般的に高いエラー率を示し、モデルの多言語能力の潜在的な制限を示唆している。
論文 参考訳(メタデータ) (2024-10-21T00:59:47Z) - M5 -- A Diverse Benchmark to Assess the Performance of Large Multimodal Models Across Multilingual and Multicultural Vision-Language Tasks [10.677274746850554]
M5は多言語コンテキストにおける様々な視覚・運動タスクのLMMを評価するために設計された最初の総合ベンチマークである。
ハイソース言語と低リソース言語のタスクに依存しないパフォーマンスの相違を強調した。
より大規模なモデルは、多言語環境では必ずしもより小さなモデルよりも優れているとは限らないことを示す。
論文 参考訳(メタデータ) (2024-07-04T09:55:04Z) - MLaKE: Multilingual Knowledge Editing Benchmark for Large Language Models [65.10456412127405]
MLaKEは5言語にわたる知識編集手法の適応性のベンチマークである。
MLaKEは、ウィキペディアから言語にまたがるファクトチェーンを集約し、フリーフォームとマルチチョイスの両方で質問を生成する。
MLaKEにおける既存手法の多言語知識編集の一般化能力を評価する。
論文 参考訳(メタデータ) (2024-04-07T15:23:28Z) - What Is Missing in Multilingual Visual Reasoning and How to Fix It [64.47951359580556]
視覚的推論タスクを用いてNLPモデルの多言語・多モーダル機能を評価する。
GPT-4Vのようなプロプライエタリなシステムは、現在このタスクで最高のパフォーマンスを得るが、オープンモデルは比較に遅れている。
我々の介入はゼロショット設定でこのタスク上で最高のオープンパフォーマンスを実現し、オープンモデルLLaVAを13.4%向上させる。
論文 参考訳(メタデータ) (2024-03-03T05:45:27Z) - Towards Building Multilingual Language Model for Medicine [54.1382395897071]
6つの主要言語を含む約25.5Bトークンを含む多言語医療コーパスを構築した。
MMedBench と呼ばれる有理性を持つ多言語医療用多言語質問応答ベンチマークを提案する。
我々の最終モデルであるMMed-Llama 3は、8Bパラメータしか持たないが、MMedBenchおよび英語ベンチマークの他のすべてのオープンソースモデルと比較して優れた性能が得られる。
論文 参考訳(メタデータ) (2024-02-21T17:47:20Z) - Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations [59.056367787688146]
本稿では, マルチリンガル数学推論 (xMR) LLM の探索と学習の先駆者である。
我々は10の異なる言語を含む最初の多言語数学推論命令データセットMGSM8KInstructを構築した。
翻訳を利用して、10個の異なる言語を含む最初の多言語数学推論命令データセットMGSM8KInstructを構築した。
論文 参考訳(メタデータ) (2023-10-31T08:09:20Z) - MM-BigBench: Evaluating Multimodal Models on Multimodal Content
Comprehension Tasks [56.60050181186531]
MM-BigBenchを導入し、様々なモデルや命令のパフォーマンスを広範囲に評価する。
本稿では,6タスクにまたがる14のマルチモーダルデータセット上で,20の言語モデル (14 MLLM) を評価し,各タスクに10の指示を与え,新しい洞察を導き出す。
論文 参考訳(メタデータ) (2023-10-13T11:57:04Z) - M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining
Large Language Models [76.88692952308084]
M3Examは、多言語、マルチモーダル、マルチレベルコンテキストにおける大規模言語モデル(LLM)を評価するためのベンチマークである。
M3Examには、9つの言語で12,317の質問があり、3つの教育レベルがある。
我々は,M3Exam上でのLLMの性能評価を行い,GPT-4を含む現在のモデルが多言語テキストに苦戦していることを確認した。
論文 参考訳(メタデータ) (2023-06-08T13:21:29Z) - Multilingual Multimodal Learning with Machine Translated Text [27.7207234512674]
英語のマルチモーダルデータの機械翻訳が、容易に利用できる多言語データの欠如を抑えるための効果的なプロキシとなるかどうかを考察する。
得られたデータセットからそのような翻訳を自動的に除去する2つの指標を提案する。
In experiment on five task across 20 languages in the IGLUE benchmark, we show that translated data can provide a useful signal for multilingual multimodal learning。
論文 参考訳(メタデータ) (2022-10-24T11:41:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。