論文の概要: Scalable diffusion posterior sampling in infinite-dimensional inverse problems
- arxiv url: http://arxiv.org/abs/2405.15643v2
- Date: Mon, 03 Feb 2025 08:49:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:05:41.069494
- Title: Scalable diffusion posterior sampling in infinite-dimensional inverse problems
- Title(参考訳): 無限次元逆問題におけるスケーラブル拡散後サンプリング
- Authors: Fabian Schneider, Duc-Lam Duong, Matti Lassas, Maarten V. de Hoop, Tapio Helin,
- Abstract要約: 本研究では,サンプリング中の前方マッピング評価を回避できる拡張拡散後サンプリング法を提案する。
この手法は無限次元拡散モデルに一般化され、厳密な収束解析と高次元CT画像実験によって検証される。
- 参考スコア(独自算出の注目度): 5.340736751238338
- License:
- Abstract: Score-based diffusion models (SDMs) have emerged as a powerful tool for sampling from the posterior distribution in Bayesian inverse problems. However, existing methods often require multiple evaluations of the forward mapping to generate a single sample, resulting in significant computational costs for large-scale inverse problems. To address this issue, we propose a scalable diffusion posterior sampling (SDPS) method to bypass forward mapping evaluations during sampling by shifting computational effort to an offline training phase, where a task-dependent score is learned based on the forward mapping. Crucially, the conditional posterior score is then derived from this trained score using affine transformations, ensuring no conditional score approximation is needed. The approach is shown to generalize to infinite-dimensional diffusion models and is validated through rigorous convergence analysis and high-dimensional CT imaging experiments.
- Abstract(参考訳): スコアベース拡散モデル(SDM)はベイズ逆問題の後部分布から抽出する強力なツールとして登場した。
しかし、既存の手法では、単一のサンプルを生成するためにフォワードマッピングの複数の評価を必要とすることが多く、その結果、大規模な逆問題に対する計算コストが大幅に上昇する。
そこで本研究では,前向きマッピングに基づいてタスク依存スコアが学習されるオフライントレーニングフェーズに移行することにより,サンプリング中の前方マッピング評価を回避できる拡張拡散後サンプリング(SDPS)手法を提案する。
重要なことは、条件付後スコアはアフィン変換を用いてトレーニングされたスコアから導出され、条件付後スコアの近似は不要である。
この手法は無限次元拡散モデルに一般化され、厳密な収束解析と高次元CT画像実験によって検証される。
関連論文リスト
- Geophysical inverse problems with measurement-guided diffusion models [0.4532517021515834]
DPS(Diffusion Posterior Sampling)とPGDM(Pseudo-inverse Guided Diffusion Model)という2つのサンプリングアルゴリズムを提案する。
DPSでは、解の1ステップの denoising 推定から得られた残差に対して、モデリング演算子の随伴を応用して誘導項を得る。
一方、PGDMは擬逆演算子を用いており、これは一段階の分極解が決定論的でないことを起源としている。
論文 参考訳(メタデータ) (2025-01-08T23:33:50Z) - Enhancing Diffusion Models for Inverse Problems with Covariance-Aware Posterior Sampling [3.866047645663101]
例えば、コンピュータビジョンでは、インペイント、デブロアリング、超解像といったタスクは、逆問題として効果的にモデル化できる。
DDPMは、追加のタスク固有のトレーニングを必要とせずに、線形逆問題に対する有望な解決策を提供する。
論文 参考訳(メタデータ) (2024-12-28T06:17:44Z) - Arbitrary-steps Image Super-resolution via Diffusion Inversion [68.78628844966019]
本研究では,拡散インバージョンに基づく新しい画像超解像(SR)手法を提案する。
本研究では,拡散モデルの中間状態を構築するための部分雑音予測戦略を設計する。
トレーニングが完了すると、このノイズ予測器を使用して、拡散軌道に沿ってサンプリングプロセスを部分的に初期化し、望ましい高分解能結果を生成する。
論文 参考訳(メタデータ) (2024-12-12T07:24:13Z) - Score-Based Variational Inference for Inverse Problems [19.848238197979157]
後部平均値が好ましいアプリケーションでは、時間を要する後部から複数のサンプルを生成する必要がある。
後部平均を直接対象とするフレームワークであるリバース平均伝搬(RMP)を確立する。
スコア関数を用いて逆KL分散を自然な勾配降下で最適化し,各逆ステップで平均を伝搬するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-10-08T02:55:16Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
そこで本稿では, 償却変分推論の観点から, 拡散による逆問題の解法を提案する。
我々の償却推論は、測定結果を対応するクリーンデータの暗黙の後方分布に直接マッピングする関数を学習し、未知の計測でも単一ステップの後方サンプリングを可能にする。
論文 参考訳(メタデータ) (2024-07-23T02:14:18Z) - Divide-and-Conquer Posterior Sampling for Denoising Diffusion Priors [21.0128625037708]
提案手法は, 分割・分散型後方サンプリング方式である。
これにより、再トレーニングを必要とせずに、現在のテクニックに関連する近似誤差を低減することができる。
ベイズ逆問題に対するアプローチの汎用性と有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T01:47:24Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
近年の拡散モデルは、特定の逆問題に対して再訓練することなく、ノイズの多い線形逆問題に対する有望なゼロショット解を提供する。
この発見に触発されて、我々は、最大推定値から決定されるより原理化された共分散を用いて、最近の手法を改善することを提案する。
論文 参考訳(メタデータ) (2024-02-03T13:35:39Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
我々は、後方サンプリングの近似により、雑音(非線形)逆問題に対処するために拡散解法を拡張した。
本手法は,拡散モデルが様々な計測ノイズ統計を組み込むことができることを示す。
論文 参考訳(メタデータ) (2022-09-29T11:12:27Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
我々は,現在の解法がデータ多様体からサンプルパスを逸脱し,エラーが蓄積することを示す。
この問題に対処するため、多様体の制約に着想を得た追加の補正項を提案する。
本手法は理論上も経験上も従来の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-02T09:06:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。