論文の概要: Comprehensive Autonomous Vehicle Optimal Routing With Dynamic Heuristics
- arxiv url: http://arxiv.org/abs/2405.15774v1
- Date: Sun, 17 Mar 2024 18:21:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 08:29:41.484337
- Title: Comprehensive Autonomous Vehicle Optimal Routing With Dynamic Heuristics
- Title(参考訳): ダイナミックヒューリスティックによる総合的自律走行車両最適ルーティング
- Authors: Ragav V, Jesher Joshua M, Syed Ibrahim S P,
- Abstract要約: AVユーザエクスペリエンスを改善するために提案されたモデルは、複数の連結自動運転車のハイブリッドAVネットワークを使用する。
この問題の真の最適解決策は、AVネットワークにおける車両の自動誘導システムを開発することである。
結果は分析され、解の有効性を評価し、ギャップと将来の拡張を識別するために比較される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Auto manufacturers and research groups are working on autonomous driving for long period and achieved significant progress. Autonomous vehicles (AV) are expected to transform road traffic reduction from current conditions, avoiding accidents and congestion. As the implementation of an autonomous vehicle ecosystem includes complex automotive technology, ethics, passenger behaviour, traffic management policies and liability etc., the maturity of AV solutions are still evolving. The proposed model to improve AV user experience, uses a hybrid AV Network of multiple connected autonomous vehicles which communicate with each other in an environment shared by human driven vehicles. The proposed Optimal AV Network (OAVN) solution provides better coordination and optimization of autonomous vehicles, improved Transportation efficiency, improved passenger comfort and safety, real-time dynamic adaption of traffic & road conditions along with improved in-cabin assistance with inputs from various sensors. The true optimal solution for this problem, is to devise an automated guidance system for vehicles in an AV network, to reach destinations in best possible routes along with passenger comfort and safety. A custom informed search model is proposed along with other heuristic goals for better user experience. The results are analysed and compared to evaluate the effectiveness of the solution and identify gaps and future enhancements.
- Abstract(参考訳): 自動車メーカーや研究グループは長い間自動運転に取り組んでおり、大きな進歩を遂げている。
自動運転車(AV)は、交通渋滞や交通渋滞を避けるため、現在の状況から道路交通量削減を転換すると予想されている。
自動運転車のエコシステムの実装には、複雑な自動車技術、倫理、乗客の行動、交通管理方針、責任などが含まれるため、AVソリューションの成熟度はまだ発展途上である。
提案するAVユーザエクスペリエンス向上モデルでは,人間駆動車両が共有する環境下で相互に通信する複数の連結自動運転車のハイブリッドAVネットワークを使用する。
提案したOAVN(Optimal AV Network)ソリューションは、自動運転車のコーディネーションと最適化の改善、交通効率の向上、乗客の快適性と安全性の向上、交通・道路条件のリアルタイム動的適応、各種センサからの入力によるインキャビンアシストの改善を提供する。
この問題に対する真の最適解決策は、AVネットワークにおける車両の自動誘導システムを考案し、乗客の快適さと安全性とともに、最良の経路の目的地に到達することである。
ユーザエクスペリエンス向上のためのカスタム情報検索モデルが,他のヒューリスティックな目標とともに提案されている。
結果は分析され、解の有効性を評価し、ギャップと将来の拡張を識別するために比較される。
関連論文リスト
- SPformer: A Transformer Based DRL Decision Making Method for Connected Automated Vehicles [9.840325772591024]
本稿ではトランスフォーマーと強化学習アルゴリズムに基づくCAV意思決定アーキテクチャを提案する。
学習可能なポリシートークンは、多車連携ポリシーの学習媒体として使用される。
我々のモデルは交通シナリオにおける車両の全ての状態情報をうまく活用することができる。
論文 参考訳(メタデータ) (2024-09-23T15:16:35Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - Reinforcement Learning for Joint V2I Network Selection and Autonomous
Driving Policies [14.518558523319518]
自動運転車(AV)の信頼性向上に向けたV2I通信の重要性が高まっている
道路衝突を最小限に抑えるため,AVのネットワーク選択と運転ポリシーを同時に最適化することが重要である。
我々は,効率的なネットワーク選択と自律運転ポリシーを特徴付ける強化学習フレームワークを開発した。
論文 参考訳(メタデータ) (2022-08-03T04:33:02Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Learning to Help Emergency Vehicles Arrive Faster: A Cooperative
Vehicle-Road Scheduling Approach [24.505687255063986]
車両中心のスケジューリングアプローチは、緊急車両の最適経路を推奨する。
道路中心のスケジューリングアプローチは、交通状況を改善し、EVが交差点を通過するための優先度を高めることを目的としている。
本稿では,リアルタイム経路計画モジュールと協調交通信号制御モジュールを含む協調型VehIcle-roaDスケジューリング手法であるLEVIDを提案する。
論文 参考訳(メタデータ) (2022-02-20T10:25:15Z) - A Cooperation-Aware Lane Change Method for Autonomous Vehicles [16.937363492078426]
本稿では,車両間の相互作用を利用した協調型車線変更手法を提案する。
まず,AVと他者間の協調の可能性を探るため,対話的な軌道予測手法を提案する。
次に,モデル予測制御(MPC)に基づく動作計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-26T04:45:45Z) - Multi-agent Reinforcement Learning for Cooperative Lane Changing of
Connected and Autonomous Vehicles in Mixed Traffic [16.858651125916133]
レーン変更は、混合および動的交通シナリオにおける自動運転車(AV)にとって大きな課題である。
本稿では,マルチエージェント強化学習(MARL)問題として,混在高速道路環境における複数のAVの車線変更決定を定式化する。
提案するMARLフレームワークは,効率,安全性,ドライバの快適性という点で,最先端のベンチマークを一貫して上回っている。
論文 参考訳(メタデータ) (2021-11-11T17:17:24Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Artificial Intelligence Aided Next-Generation Networks Relying on UAVs [140.42435857856455]
動的環境において,人工知能(AI)による無人航空機(UAV)による次世代ネットワーク支援が提案されている。
AI対応のUAV支援無線ネットワーク(UAWN)では、複数のUAVが航空基地局として使用され、ダイナミックな環境に迅速に適応することができる。
AIフレームワークの利点として、従来のUAWNのいくつかの課題が回避され、ネットワークパフォーマンスが向上し、信頼性が向上し、アジャイル適応性が向上する。
論文 参考訳(メタデータ) (2020-01-28T15:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。