論文の概要: A Cooperation-Aware Lane Change Method for Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2201.10746v1
- Date: Wed, 26 Jan 2022 04:45:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-27 14:12:00.948995
- Title: A Cooperation-Aware Lane Change Method for Autonomous Vehicles
- Title(参考訳): 自動運転車の協調対応車線変更手法
- Authors: Zihao Sheng, Lin Liu, Shibei Xue, Dezong Zhao, Min Jiang, Dewei Li
- Abstract要約: 本稿では,車両間の相互作用を利用した協調型車線変更手法を提案する。
まず,AVと他者間の協調の可能性を探るため,対話的な軌道予測手法を提案する。
次に,モデル予測制御(MPC)に基づく動作計画アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 16.937363492078426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lane change for autonomous vehicles (AVs) is an important but challenging
task in complex dynamic traffic environments. Due to difficulties in guarantee
safety as well as a high efficiency, AVs are inclined to choose relatively
conservative strategies for lane change. To avoid the conservatism, this paper
presents a cooperation-aware lane change method utilizing interactions between
vehicles. We first propose an interactive trajectory prediction method to
explore possible cooperations between an AV and the others. Further, an
evaluation is designed to make a decision on lane change, in which safety,
efficiency and comfort are taken into consideration. Thereafter, we propose a
motion planning algorithm based on model predictive control (MPC), which
incorporates AV's decision and surrounding vehicles' interactive behaviors into
constraints so as to avoid collisions during lane change. Quantitative testing
results show that compared with the methods without an interactive prediction,
our method enhances driving efficiencies of the AV and other vehicles by
14.8$\%$ and 2.6$\%$ respectively, which indicates that a proper utilization of
vehicle interactions can effectively reduce the conservatism of the AV and
promote the cooperation between the AV and others.
- Abstract(参考訳): 自動運転車の車線変更(avs)は複雑な動的交通環境において重要だが困難なタスクである。
安全性の確保と高い効率の確保が難しいため、AVは比較的保守的な車線変更戦略を選択する傾向にある。
保守主義を回避するため,車両間の相互作用を利用した協調型車線変更手法を提案する。
まず,AVと他者間の協調の可能性を探るため,対話的な軌道予測手法を提案する。
さらに、安全性、効率、快適性を考慮し、車線変更の決定を行うように設計されている。
その後,モデル予測制御(MPC)に基づく動作計画アルゴリズムを提案し,車線変更時の衝突を避けるために,AVの判断と周囲の車両の対話動作を制約に組み込む。
定量的評価の結果,インタラクティブ予測を行わない手法と比較すると,avと他車両の運転効率をそれぞれ14.8$\%$と2.6$\%$で向上させ,車両間相互作用の適正な利用がavの保守性を効果的に低減し,avと他車両の協調を促進することが示唆された。
関連論文リスト
- Characterizing Behavioral Differences and Adaptations of Automated Vehicles and Human Drivers at Unsignalized Intersections: Insights from Waymo and Lyft Open Datasets [9.080817016043769]
自動運転車(AV)の交通システムへの統合は、道路の安全性と効率を高める前例のない機会である。
本研究では,無人交差点におけるAVと人間駆動車(HV)の行動差と適応性を調べることにより,ギャップを埋めることを目的とする。
この研究は、系統的な手法を用いて、重要な安全性と効率の指標を計算することによって、衝突の合併と交差を識別し分析する。
論文 参考訳(メタデータ) (2024-10-16T13:19:32Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
コネクテッド・オートモービルズ(CAV)は世界中の道路試験を開始したが、複雑なシナリオにおける安全性と効率性はまだ十分ではない。
本稿では,対話型かつ学習可能なLLM駆動協調運転フレームワークCoDrivingLLMを提案する。
論文 参考訳(メタデータ) (2024-09-19T14:36:00Z) - A Conflicts-free, Speed-lossless KAN-based Reinforcement Learning Decision System for Interactive Driving in Roundabouts [17.434924472015812]
本稿では,ラウンドアバウンドにおける安全かつ効率的な運転行動を促進するための学習アルゴリズムを提案する。
提案アルゴリズムは、複雑なマルチサイクルラウンドアバウトにおける安全かつ効率的な運転戦略を学習するために、深層Q-ラーニングネットワークを用いる。
その結果,本システムは安定したトレーニングプロセスを維持しつつ,安全かつ効率的な運転を実現することができた。
論文 参考訳(メタデータ) (2024-08-15T16:10:25Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Multi-agent Reinforcement Learning for Cooperative Lane Changing of
Connected and Autonomous Vehicles in Mixed Traffic [16.858651125916133]
レーン変更は、混合および動的交通シナリオにおける自動運転車(AV)にとって大きな課題である。
本稿では,マルチエージェント強化学習(MARL)問題として,混在高速道路環境における複数のAVの車線変更決定を定式化する。
提案するMARLフレームワークは,効率,安全性,ドライバの快適性という点で,最先端のベンチマークを一貫して上回っている。
論文 参考訳(メタデータ) (2021-11-11T17:17:24Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
本稿では,高密度交通シナリオにおける対話型モーションプランニングのための新しい枠組みを提案する。
我々は,他車両の協調性に関する国際的ガイダンスを提供するインタラクション対応政策であるDeep Reinforcement Learning (RL) を通じて学習することを提案する。
学習されたポリシーは、ローカル最適化ベースのプランナーを推論し、対話的な振る舞いで誘導し、他の車両が収まらない場合に安全を維持しながら、密集したトラフィックに積極的にマージする。
論文 参考訳(メタデータ) (2021-07-09T16:43:12Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
軌道予測は、自動運転車が行動を計画し実行するための安全クリティカルなツールです。
近年の手法は,WTAやベスト・オブ・マニーといったマルチコース学習の目標を用いて,強力なパフォーマンスを実現している。
我々の研究は、軌道予測、学習出力、そして運転知識を使って制約を課すことによるより良い予測における2つの重要な課題に対処する。
論文 参考訳(メタデータ) (2021-04-16T17:58:56Z) - What-If Motion Prediction for Autonomous Driving [58.338520347197765]
生存可能なソリューションは、道路レーンのような静的な幾何学的文脈と、複数のアクターから生じる動的な社会的相互作用の両方を考慮しなければならない。
本稿では,解釈可能な幾何学的(アクター・レーン)と社会的(アクター・アクター)の関係を持つグラフに基づく注意的アプローチを提案する。
提案モデルでは,道路レーンやマルチアクターの相互作用を仮定的に,あるいは「何」かで予測できる。
論文 参考訳(メタデータ) (2020-08-24T17:49:30Z) - A Multi-Agent Reinforcement Learning Approach For Safe and Efficient
Behavior Planning Of Connected Autonomous Vehicles [21.132777568170702]
我々は、コネクテッド・自動運転車のための情報共有型強化学習フレームワークを設計する。
提案手法は, 平均速度と快適性の観点から, CAV システムの効率性を向上させることができることを示す。
我々は,共用視覚が早期に障害物を観測し,交通渋滞を避けるために行動を起こすのに役立つことを示すために,障害物回避シナリオを構築した。
論文 参考訳(メタデータ) (2020-03-09T19:15:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。