論文の概要: Towards a Framework for Openness in Foundation Models: Proceedings from the Columbia Convening on Openness in Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2405.15802v1
- Date: Fri, 17 May 2024 20:35:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-02 14:39:48.875604
- Title: Towards a Framework for Openness in Foundation Models: Proceedings from the Columbia Convening on Openness in Artificial Intelligence
- Title(参考訳): ファウンデーションモデルにおけるオープンネスの枠組みに向けて--人工知能におけるオープンネスに関するコロンビア・コンベンションから
- Authors: Adrien Basdevant, Camille François, Victor Storchan, Kevin Bankston, Ayah Bdeir, Brian Behlendorf, Merouane Debbah, Sayash Kapoor, Yann LeCun, Mark Surman, Helen King-Turvey, Nathan Lambert, Stefano Maffulli, Nik Marda, Govind Shivkumar, Justine Tunney,
- Abstract要約: 本稿では,AIスタックにまたがるオープンネスと闘うためのフレームワークを提案する。
このトピックに関する以前の研究を要約し、オープン性を追求する様々な潜在的理由を分析します。
モデルとシステムレベルで、AIスタックのさまざまな部分でオープン性がどのように変化するのかを概説する。
- 参考スコア(独自算出の注目度): 18.130525337375985
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Over the past year, there has been a robust debate about the benefits and risks of open sourcing foundation models. However, this discussion has often taken place at a high level of generality or with a narrow focus on specific technical attributes. In part, this is because defining open source for foundation models has proven tricky, given its significant differences from traditional software development. In order to inform more practical and nuanced decisions about opening AI systems, including foundation models, this paper presents a framework for grappling with openness across the AI stack. It summarizes previous work on this topic, analyzes the various potential reasons to pursue openness, and outlines how openness varies in different parts of the AI stack, both at the model and at the system level. In doing so, its authors hope to provide a common descriptive framework to deepen a nuanced and rigorous understanding of openness in AI and enable further work around definitions of openness and safety in AI.
- Abstract(参考訳): 過去1年間、オープンソース基盤モデルの利点とリスクについて、しっかりと議論されてきた。
しかし、この議論は、しばしば高いレベルの一般性、あるいは特定の技術的属性に限定して行われた。
その理由のひとつは、従来のソフトウェア開発との大きな違いを考えれば、基礎モデルのためのオープンソースの定義が難しいことが証明されているからである。
基礎モデルを含むAIシステムのオープン化に関する,より実践的でニュアンスな決定を通知するために,本論文では,AIスタック全体にわたるオープン化に対応するためのフレームワークを提案する。
このトピックに関する以前の研究を要約し、オープン性追求のさまざまな潜在的理由を分析し、モデルとシステムレベルで、AIスタックのさまざまな部分でオープン性がどのように変化するのかを概説する。
そうすることで、AIのオープン性に関する曖昧で厳密な理解を深め、AIのオープン性と安全性の定義に関するさらなる作業を可能にする、共通の記述的フレームワークを提供することを期待している。
関連論文リスト
- Towards Few-Shot Learning in the Open World: A Review and Beyond [52.41344813375177]
少ないショット学習は、人間の知性を模倣し、大きな一般化と伝達性を実現することを目的としている。
本稿では,FSLをオープンワールド環境に適用するための最近の進歩について概説する。
既存の手法は,3つの異なるタイプのオープンワールド・マイクロショット・ラーニングに分類する。
論文 参考訳(メタデータ) (2024-08-19T06:23:21Z) - Open-Endedness is Essential for Artificial Superhuman Intelligence [19.381655909809776]
我々は,人間の観察者に対して,AIシステムにおける開放性を達成するための材料が現在存在することを論じる。
我々は、一般の能力を持つオープンAIの安全性への影響を検証して結論付ける。
論文 参考訳(メタデータ) (2024-06-06T17:15:02Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Generative AI(Gen AI)の応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の変化の可能性は、この技術の潜在的なリスクについて活発に議論を巻き起こし、より厳格な規制を要求した。
この規制は、オープンソースの生成AIの誕生する分野を危険にさらす可能性がある。
論文 参考訳(メタデータ) (2024-05-14T13:37:36Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Generative AIの応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の影響の可能性は、潜在的なリスクに関する活発な議論を引き起こし、より厳格な規制を要求した。
この規制は、オープンソースのジェネレーティブAIの誕生する分野を危険にさらしている可能性が高い。
論文 参考訳(メタデータ) (2024-04-25T21:14:24Z) - On the Societal Impact of Open Foundation Models [93.67389739906561]
ここでは、広く利用可能なモデルウェイトを持つものとして定義されている、オープンファンデーションモデルに重点を置いています。
オープンファンデーションモデルの5つの特徴を識別し,その利点とリスクを両立させる。
論文 参考訳(メタデータ) (2024-02-27T16:49:53Z) - Emergent Explainability: Adding a causal chain to neural network
inference [0.0]
本稿では,創発的コミュニケーション(EmCom)による説明可能な人工知能(xAI)の強化のための理論的枠組みを提案する。
我々は、EmComのAIシステムへの新たな統合を探求し、入力と出力の間の従来の連想関係から、より微妙で因果的解釈へのパラダイムシフトを提供する。
本稿は、このアプローチの理論的基盤、潜在的に広い応用、そして、責任と透明なAIシステムに対するニーズの増大と整合性について論じる。
論文 参考訳(メタデータ) (2024-01-29T02:28:39Z) - Open-Sourcing Highly Capable Foundation Models: An evaluation of risks,
benefits, and alternative methods for pursuing open-source objectives [6.575445633821399]
AIラボをオープンソースにするか、あるいはモデルへのアクセスを制限するという最近の決定は、議論を巻き起こした。
本稿では,高機能基盤モデルのオープンソース化のリスクとメリットについて考察する。
論文 参考訳(メタデータ) (2023-09-29T17:03:45Z) - A Survey on Neural Open Information Extraction: Current Status and
Future Directions [87.30702606041407]
Open Information extract (OpenIE) は、大規模コーパスからの関係事実のドメインに依存しない発見を容易にする。
我々は、最先端のニューラルなOpenIEモデル、その設計決定、強み、弱点について概観する。
論文 参考訳(メタデータ) (2022-05-24T02:24:55Z) - KAT: A Knowledge Augmented Transformer for Vision-and-Language [56.716531169609915]
我々は、OK-VQAのオープンドメインマルチモーダルタスクにおいて、最先端の強力な結果をもたらす新しいモデルである知識拡張トランスフォーマー(KAT)を提案する。
提案手法は,エンド・ツー・エンドのエンコーダ・デコーダアーキテクチャにおいて暗黙的かつ明示的な知識を統合しつつ,回答生成時に両知識源を共同で推論する。
我々の分析では、モデル予測の解釈可能性の向上に、明示的な知識統合のさらなる利点が見られる。
論文 参考訳(メタデータ) (2021-12-16T04:37:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。