From CNNs to Transformers in Multimodal Human Action Recognition: A Survey
- URL: http://arxiv.org/abs/2405.15813v1
- Date: Wed, 22 May 2024 02:11:18 GMT
- Title: From CNNs to Transformers in Multimodal Human Action Recognition: A Survey
- Authors: Muhammad Bilal Shaikh, Syed Mohammed Shamsul Islam, Douglas Chai, Naveed Akhtar,
- Abstract summary: Human action recognition is one of the most widely studied research problems in Computer Vision.
Recent studies have shown that addressing it using multimodal data leads to superior performance.
Recent rise of Transformers in visual modelling is now also causing a paradigm shift for the action recognition task.
- Score: 23.674123304219822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to its widespread applications, human action recognition is one of the most widely studied research problems in Computer Vision. Recent studies have shown that addressing it using multimodal data leads to superior performance as compared to relying on a single data modality. During the adoption of deep learning for visual modelling in the last decade, action recognition approaches have mainly relied on Convolutional Neural Networks (CNNs). However, the recent rise of Transformers in visual modelling is now also causing a paradigm shift for the action recognition task. This survey captures this transition while focusing on Multimodal Human Action Recognition (MHAR). Unique to the induction of multimodal computational models is the process of "fusing" the features of the individual data modalities. Hence, we specifically focus on the fusion design aspects of the MHAR approaches. We analyze the classic and emerging techniques in this regard, while also highlighting the popular trends in the adaption of CNN and Transformer building blocks for the overall problem. In particular, we emphasize on recent design choices that have led to more efficient MHAR models. Unlike existing reviews, which discuss Human Action Recognition from a broad perspective, this survey is specifically aimed at pushing the boundaries of MHAR research by identifying promising architectural and fusion design choices to train practicable models. We also provide an outlook of the multimodal datasets from their scale and evaluation viewpoint. Finally, building on the reviewed literature, we discuss the challenges and future avenues for MHAR.
Related papers
- Keypoints-Integrated Instruction-Following Data Generation for Enhanced Human Pose Understanding in Multimodal Models [1.9890559505377343]
We introduce a new method for generating such data by integrating human keypoints with traditional visual features like captions and bounding boxes.
Our approach produces datasets designed for fine-tuning models to excel in human-centric activities.
Experimental results show an overall improvement of 21.18% compared to the original LLaVA-7B model.
arXiv Detail & Related papers (2024-09-14T05:07:57Z) - Probing Fine-Grained Action Understanding and Cross-View Generalization of Foundation Models [13.972809192907931]
Foundation models (FMs) are large neural networks trained on broad datasets.
Human activity recognition in video has advanced with FMs, driven by competition among different architectures.
This paper empirically evaluates how perspective changes affect different FMs in fine-grained human activity recognition.
arXiv Detail & Related papers (2024-07-22T12:59:57Z) - A Reliable Framework for Human-in-the-Loop Anomaly Detection in Time Series [17.08674819906415]
We introduce HILAD, a novel framework designed to foster a dynamic and bidirectional collaboration between humans and AI.
Through our visual interface, HILAD empowers domain experts to detect, interpret, and correct unexpected model behaviors at scale.
arXiv Detail & Related papers (2024-05-06T07:44:07Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Comprehensive Exploration of Synthetic Data Generation: A Survey [4.485401662312072]
This work surveys 417 Synthetic Data Generation models over the last decade.
The findings reveal increased model performance and complexity, with neural network-based approaches prevailing.
Computer vision dominates, with GANs as primary generative models, while diffusion models, transformers, and RNNs compete.
arXiv Detail & Related papers (2024-01-04T20:23:51Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - A Comprehensive Survey on Applications of Transformers for Deep Learning
Tasks [60.38369406877899]
Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data.
transformer models excel in handling long dependencies between input sequence elements and enable parallel processing.
Our survey encompasses the identification of the top five application domains for transformer-based models.
arXiv Detail & Related papers (2023-06-11T23:13:51Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Perceptual Score: What Data Modalities Does Your Model Perceive? [73.75255606437808]
We introduce the perceptual score, a metric that assesses the degree to which a model relies on the different subsets of the input features.
We find that recent, more accurate multi-modal models for visual question-answering tend to perceive the visual data less than their predecessors.
Using the perceptual score also helps to analyze model biases by decomposing the score into data subset contributions.
arXiv Detail & Related papers (2021-10-27T12:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.