CausalConceptTS: Causal Attributions for Time Series Classification using High Fidelity Diffusion Models
- URL: http://arxiv.org/abs/2405.15871v1
- Date: Fri, 24 May 2024 18:33:18 GMT
- Title: CausalConceptTS: Causal Attributions for Time Series Classification using High Fidelity Diffusion Models
- Authors: Juan Miguel Lopez Alcaraz, Nils Strodthoff,
- Abstract summary: We introduce a novel framework to assess the causal effect of concepts on specific classification outcomes.
We leverage state-of-the-art diffusion-based generative models to estimate counterfactual outcomes.
Our approach compares these causal attributions with closely related associational attributions, both theoretically and empirically.
- Score: 1.068128849363198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the excelling performance of machine learning models, understanding the decisions of machine learning models remains a long-standing goal. While commonly used attribution methods in explainable AI attempt to address this issue, they typically rely on associational rather than causal relationships. In this study, within the context of time series classification, we introduce a novel framework to assess the causal effect of concepts, i.e., predefined segments within a time series, on specific classification outcomes. To achieve this, we leverage state-of-the-art diffusion-based generative models to estimate counterfactual outcomes. Our approach compares these causal attributions with closely related associational attributions, both theoretically and empirically. We demonstrate the insights gained by our approach for a diverse set of qualitatively different time series classification tasks. Although causal and associational attributions might often share some similarities, in all cases they differ in important details, underscoring the risks associated with drawing causal conclusions from associational data alone. We believe that the proposed approach is widely applicable also in other domains, particularly where predefined segmentations are available, to shed some light on the limits of associational attributions.
Related papers
- A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
We review the use of diffusion models in time series and S-temporal data, categorizing them by model, task type, data modality, and practical application domain.
We categorize diffusion models into unconditioned and conditioned types discuss time series and S-temporal data separately.
Our survey covers their application extensively in various fields including healthcare, recommendation, climate, energy, audio, and transportation.
arXiv Detail & Related papers (2024-04-29T17:19:40Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
We introduce a Structural Causal Model (SCM) to induce the underlying causal structure of the summarization data.
We propose a Causality Inspired Sequence-to-Sequence model (CI-Seq2Seq) to learn the causal representations that can mimic the causal factors.
Experimental results on two widely used text summarization datasets demonstrate the advantages of our approach.
arXiv Detail & Related papers (2023-08-24T16:06:36Z) - Invariant Causal Set Covering Machines [64.86459157191346]
Rule-based models, such as decision trees, appeal to practitioners due to their interpretable nature.
However, the learning algorithms that produce such models are often vulnerable to spurious associations and thus, they are not guaranteed to extract causally-relevant insights.
We propose Invariant Causal Set Covering Machines, an extension of the classical Set Covering Machine algorithm for conjunctions/disjunctions of binary-valued rules that provably avoids spurious associations.
arXiv Detail & Related papers (2023-06-07T20:52:01Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
We study the relationship between cross-domain learning (CD) and model fairness.
We introduce a benchmark on face and medical images spanning several demographic groups as well as classification and localization tasks.
Our study covers 14 CD approaches alongside three state-of-the-art fairness algorithms and shows how the former can outperform the latter.
arXiv Detail & Related papers (2023-03-25T09:34:05Z) - Learning Data Representations with Joint Diffusion Models [20.25147743706431]
Joint machine learning models that allow synthesizing and classifying data often offer uneven performance between those tasks or are unstable to train.
We extend the vanilla diffusion model with a classifier that allows for stable joint end-to-end training with shared parameterization between those objectives.
The resulting joint diffusion model outperforms recent state-of-the-art hybrid methods in terms of both classification and generation quality on all evaluated benchmarks.
arXiv Detail & Related papers (2023-01-31T13:29:19Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
We first propose a new approach to quantify the temporal relationships between frames captured by CNN-based action models.
We then conduct comprehensive experiments and in-depth analysis to provide a better understanding of how temporal modeling is affected.
arXiv Detail & Related papers (2022-04-25T19:06:48Z) - Causal Forecasting:Generalization Bounds for Autoregressive Models [19.407531303870087]
We introduce the framework of *causal learning theory* for forecasting.
We obtain a characterization of the difference between statistical and causal risks.
This is the first work that provides theoretical guarantees for causal generalization in the time-series setting.
arXiv Detail & Related papers (2021-11-18T17:56:20Z) - AnANet: Modeling Association and Alignment for Cross-modal Correlation
Classification [20.994250472941427]
We present a comprehensive analysis of the image-text correlation and redefine a new classification system based on implicit association and explicit alignment.
The experimental results on our constructed new image-text correlation dataset show the effectiveness of our model.
arXiv Detail & Related papers (2021-09-02T03:42:35Z) - Time Adaptive Gaussian Model [0.913755431537592]
Our model is a generalization of state-of-the-art methods for the inference of temporal graphical models.
It performs pattern recognition by clustering data points in time; and, it finds probabilistic (and possibly causal) relationships among the observed variables.
arXiv Detail & Related papers (2021-02-02T00:28:14Z) - Pairwise Supervision Can Provably Elicit a Decision Boundary [84.58020117487898]
Similarity learning is a problem to elicit useful representations by predicting the relationship between a pair of patterns.
We show that similarity learning is capable of solving binary classification by directly eliciting a decision boundary.
arXiv Detail & Related papers (2020-06-11T05:35:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.