Quantum Phase Transition in a Modified Jaynes-Cummings Model
- URL: http://arxiv.org/abs/2405.15876v1
- Date: Fri, 24 May 2024 18:40:17 GMT
- Title: Quantum Phase Transition in a Modified Jaynes-Cummings Model
- Authors: Moorad Alexanian,
- Abstract summary: We introduce a modified Jaynes-Cummings model with single-photon cavity radiation field.
The quantum phase transition realized in the Rabi model, giving rise to superradiance, also occurs in the Jaynes-Cummings model.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We introduce a modified Jaynes-Cummings model with single-photon cavity radiation field but with the atomic system instead of exchanging a single photon as in the Jaynes-Cummings model, it exchanges instead a squeezed photon with squeezing parameter r. This allows us to interpolate between the Rabi model, r = infinity, and the Jaynes-Cummings model, r = 0, by varying r. The model exhibits a quantum phase transition. Accordingly, the quantum phase transition realized in the Rabi model, giving rise to superradiance, also occurs in the Jaynes-Cummings model
Related papers
- Jaynes-Cummings interaction with a traveling light pulse [2.7204116565403744]
The Jaynes-Cummings model provides a simple and accurate description of the interaction between a two-level quantum emitter and a single mode of quantum radiation.
We review a cascaded quantum system approach that accurately describes the interaction of a quantum system with an incident quantum pulse of radiation.
arXiv Detail & Related papers (2024-03-07T10:22:42Z) - Nonperturbative cavity quantum electrodynamics: is the Jaynes-Cummings model still relevant? [0.0]
We briefly discuss the role that the Jaynes-Cummings model occupies in present-day research in cavity quantum electrodynamics.
We show how the Jaynes-Cummings model still plays a crucial role even in non-perturbative light-matter coupling regimes.
arXiv Detail & Related papers (2024-03-04T19:00:09Z) - Dynamics Reflects Quantum Phase Transition of Rabi Model [0.0]
A breakdown in the rotating wave approximation of the Rabi model leads to phase transition versus coupling strength.
We show that the dynamics of physical quantities can reflect such a phase transition for this model.
This work offers an idea to explore phase transitions by non-equilibrium process for open quantum systems.
arXiv Detail & Related papers (2023-09-13T14:45:07Z) - Solving and Completing the Rabi-Stark Model in the Ultrastrong Coupling
Regime [10.645443650115086]
We derive the analytical energy spectra in the ultrastrong coupling regime.
We observe a regular "staircase" pattern in the mean photon number of the ground state.
We analytically determine the phase boundary, which slightly differs from that in the original Rabi-Stark model.
arXiv Detail & Related papers (2023-08-16T03:01:19Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Particle-Hole Ansatz in the Jaynes-Cummings-Hubbard Model [0.0]
A recurrence relation ansatz between annihilation operators applied to the hopping interaction term of the Jaynes-Cummings-Hubbard model (JCHM) reduces the JCHM to that of the ordinary Jaynes-Cummings model (JCM)
This allows us to calculate the phase diagram for the Mott-to-superfluid phase transition and the critical hopping strength as a function of the detuning.
arXiv Detail & Related papers (2023-06-01T01:12:57Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Correlations between cascaded photons from spatially localized
biexcitons in ZnSe [55.41644538483948]
We demonstrate a radiative cascade from the decay of a biexciton at an impurity-atom complex in aSe quantum well.
Our result establishes impurity atoms inSe as a potential platform for photonic quantum technologies using radiative cascades.
arXiv Detail & Related papers (2022-03-11T23:15:37Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.