論文の概要: HYSYNTH: Context-Free LLM Approximation for Guiding Program Synthesis
- arxiv url: http://arxiv.org/abs/2405.15880v1
- Date: Fri, 24 May 2024 18:45:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 02:20:04.352550
- Title: HYSYNTH: Context-Free LLM Approximation for Guiding Program Synthesis
- Title(参考訳): HYSYNTH:プログラム合成誘導のための文脈自由LLM近似
- Authors: Shraddha Barke, Emmanuel Anaya Gonzalez, Saketh Ram Kasibatla, Taylor Berg-Kirkpatrick, Nadia Polikarpova,
- Abstract要約: 大規模言語モデル(LLM)は、よく知らないDSLで完全に正しいプログラムを生成するのに失敗する。
これらの制約により、与えられたタスクに対する LLM 補完をタスク固有の文脈自由代用モデル学習に使用するハイブリッドアプローチを導入する。
このハイブリッドなアプローチを3つの領域で評価し、既存のプログラムシンセサイザーと同様に、無誘導探索とLCMからの直接サンプリングの両方より優れていることを示す。
- 参考スコア(独自算出の注目度): 25.260063704712458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many structured prediction and reasoning tasks can be framed as program synthesis problems, where the goal is to generate a program in a domain-specific language (DSL) that transforms input data into the desired output. Unfortunately, purely neural approaches, such as large language models (LLMs), often fail to produce fully correct programs in unfamiliar DSLs, while purely symbolic methods based on combinatorial search scale poorly to complex problems. Motivated by these limitations, we introduce a hybrid approach, where LLM completions for a given task are used to learn a task-specific, context-free surrogate model, which is then used to guide program synthesis. We evaluate this hybrid approach on three domains, and show that it outperforms both unguided search and direct sampling from LLMs, as well as existing program synthesizers.
- Abstract(参考訳): 多くの構造化された予測と推論タスクは、プログラム合成問題として、入力データを所望の出力に変換するドメイン固有言語(DSL)でプログラムを生成することを目標としている。
残念ながら、大きな言語モデル(LLM)のような純粋に神経的なアプローチは、よく知らないDSLで完全に正しいプログラムを生成するのに失敗する。
これらの制約により、与えられたタスクに対する LLM 補完をタスク固有の文脈自由代用モデル学習に使用し、プログラム合成をガイドするハイブリッドアプローチを導入する。
このハイブリッドなアプローチを3つの領域で評価し、既存のプログラムシンセサイザーと同様に、無誘導探索とLCMからの直接サンプリングの両方より優れていることを示す。
関連論文リスト
- Large Language Models are Interpretable Learners [53.56735770834617]
本稿では,Large Language Models(LLM)とシンボルプログラムの組み合わせによって,表現性と解釈可能性のギャップを埋めることができることを示す。
自然言語プロンプトを持つ事前訓練されたLLMは、生の入力を自然言語の概念に変換することができる解釈可能な膨大なモジュールセットを提供する。
LSPが学んだ知識は自然言語の記述と記号規則の組み合わせであり、人間(解釈可能)や他のLLMに容易に転送できる。
論文 参考訳(メタデータ) (2024-06-25T02:18:15Z) - Synthesizing Programmatic Reinforcement Learning Policies with Large Language Model Guided Search [7.769411917500852]
LLM誘導検索フレームワーク(LLM-GS)について紹介する。
我々の重要な洞察は、LLMのプログラミングの専門知識と常識推論を活用して、仮定不要でランダムな探索手法の効率を高めることである。
本研究では,プログラム検索空間を効率的に探索し,一貫したプログラム改善を実現するための探索アルゴリズムであるSchduled Hill Climbingを開発した。
論文 参考訳(メタデータ) (2024-05-26T06:33:48Z) - Guiding Enumerative Program Synthesis with Large Language Models [15.500250058226474]
本稿では,形式的合成ベンチマークを解くための大規模言語モデルの能力を評価する。
ワンショット合成が失敗すると,新しい列挙合成アルゴリズムを提案する。
形式的合成のためのスタンドアロンツールとしてGPT-3.5は,最先端の形式的合成アルゴリズムにより容易に性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-03-06T19:13:53Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
本研究では,大規模言語モデル (LLM) の推論能力を向上させるために,新しい満足度支援言語モデリング (SatLM) 手法を提案する。
我々はLLMを用いて命令型プログラムではなく宣言型タスク仕様を生成し、既製の自動定理証明器を利用して最終解を導出する。
我々はSATLMを8つの異なるデータセット上で評価し、命令パラダイムにおいてプログラム支援されたLMよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-05-16T17:55:51Z) - Fully Autonomous Programming with Large Language Models [0.9558392439655015]
LLM(Large Language Models)を用いたプログラム合成への最近のアプローチは、"ニアミスシンドローム"を示す。
我々は、LLMとプログラム合成ベンチマーク2としてOpenAI Codexを使用し、問題記述と評価のためのテストのデータベースとして使用します。
結果として生じるフレームワークは、修復フェーズなしでのCodexの従来の使用法と、従来の遺伝的プログラミングアプローチの両方を上回ります。
論文 参考訳(メタデータ) (2023-04-20T16:12:05Z) - Latent Execution for Neural Program Synthesis Beyond Domain-Specific
Languages [97.58968222942173]
入力出力の例からCプログラムを合成する第一歩を踏み出す。
特に,部分生成プログラムの実行を近似するために潜在表現を学習するLa Synthを提案する。
これらのプログラムのトレーニングにより,Karel と C のプログラム合成における予測性能がさらに向上することを示す。
論文 参考訳(メタデータ) (2021-06-29T02:21:32Z) - Latent Programmer: Discrete Latent Codes for Program Synthesis [56.37993487589351]
プログラム合成や文書要約などの多くのシーケンス学習タスクにおいて、重要な問題は出力シーケンスの広い空間を探索することである。
本稿では,検索対象とする出力の表現を学習することを提案する。
本稿では,まず入力/出力サンプルから離散潜在コードを予測するプログラム合成手法であるemphLatent Programmerを紹介し,そのプログラムを対象言語で生成する。
論文 参考訳(メタデータ) (2020-12-01T10:11:35Z) - Optimal Neural Program Synthesis from Multimodal Specifications [45.35689345004124]
マルチモーダルプログラム合成は、プログラム合成を挑戦的な設定に拡張する魅力的な方法である。
本稿では,ユーザが提供する制約を満たすプログラムを見つけることを目的とした,最適なニューラルシンセサイザー手法を提案する。
論文 参考訳(メタデータ) (2020-10-04T20:51:21Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
プログラムのボトムアップ検索に学習を活用する新しい合成手法を提案する。
特に、入力出力例のセットに基づいて、探索条件中の中間値の合成を優先順位付けするようにモデルを訓練する。
単純な教師付き学習アプローチであっても,学習とボトムアップ検索の組み合わせは極めて効果的であることを示す。
論文 参考訳(メタデータ) (2020-07-28T17:46:18Z) - Towards Neural-Guided Program Synthesis for Linear Temporal Logic
Specifications [26.547133495699093]
ニューラルネットワークを用いてQ関数を学習し、探索を誘導し、その後正当性を検証したプログラムを構築する。
提案手法は,検索と深層学習を組み合わせることで,合成を実現するのにユニークな手法である。
論文 参考訳(メタデータ) (2019-12-31T17:09:49Z) - Synthetic Datasets for Neural Program Synthesis [66.20924952964117]
本稿では,プログラムと仕様の両方で合成データ分布のバイアスを制御し,評価するための新しい手法を提案する。
そこで我々は,Karel DSLと小さなCalculator DSLを用いて,これらの分布上でのディープネットワークのトレーニングにより,分散一般化性能が向上することが実証された。
論文 参考訳(メタデータ) (2019-12-27T21:28:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。