論文の概要: Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions for Large Language Models
- arxiv url: http://arxiv.org/abs/2407.21077v1
- Date: Mon, 29 Jul 2024 20:42:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 19:35:32.253323
- Title: Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions for Large Language Models
- Title(参考訳): 遺伝的命令:大規模言語モデルのための符号化命令の合成生成のスケールアップ
- Authors: Somshubra Majumdar, Vahid Noroozi, Sean Narenthiran, Aleksander Ficek, Jagadeesh Balam, Boris Ginsburg,
- Abstract要約: 本稿では,大規模言語モデルのコード生成能力を高めるために,合成命令を生成するスケーラブルな手法を提案する。
提案したアルゴリズムは進化過程を模倣し、自己インストラクションを利用して限られた数の種子から多数の合成サンプルを生成する。
- 参考スコア(独自算出の注目度): 54.51932175059004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) rely on instruction samples for alignment, but creating these datasets poses challenges, particularly in expert-dependent tasks like coding, which can be cost-prohibitive. One approach to mitigate these challenges is synthesizing data using another LLM. In this paper, we introduce a scalable method for generating synthetic instructions to enhance the code generation capability of LLMs. The proposed algorithm, Genetic-Instruct, mimics evolutionary processes, utilizing self-instruction to create numerous synthetic samples from a limited number of seeds. Genetic-Instruct is designed for efficient scaling of the generation process. Fine-tuning multiple coding LLMs with the synthetic samples demonstrates a significant improvement in their code generation accuracy compared to the baselines.
- Abstract(参考訳): 大規模言語モデル(LLM)は、アライメントのための命令サンプルに依存するが、これらのデータセットを作成することは、特にコストを抑えることができるコーディングのような専門家に依存したタスクにおいて、課題を引き起こす。
これらの課題を緩和するための1つのアプローチは、別のLCMを使ってデータを合成することである。
本稿では,LLMのコード生成能力を高めるために,合成命令を生成するスケーラブルな手法を提案する。
提案したアルゴリズムは進化過程を模倣し、自己インストラクションを利用して限られた数の種子から多数の合成サンプルを生成する。
遺伝的インストラクトは、生成プロセスの効率的なスケーリングのために設計されている。
合成サンプルを用いた微調整多重符号化LLMは,ベースラインに比べてコード生成精度が大幅に向上したことを示す。
関連論文リスト
- SnipGen: A Mining Repository Framework for Evaluating LLMs for Code [51.07471575337676]
言語モデル(LLM)は、コードリポジトリを含む広範なデータセットに基づいてトレーニングされる。
それらの有効性を評価することは、トレーニングに使用されるデータセットと評価に使用されるデータセットとが重複する可能性があるため、大きな課題となる。
SnipGenは、コード生成のために、様々な下流タスクをまたいだ迅速なエンジニアリングを活用するように設計された包括的なリポジトリマイニングフレームワークである。
論文 参考訳(メタデータ) (2025-02-10T21:28:15Z) - EpiCoder: Encompassing Diversity and Complexity in Code Generation [49.170195362149386]
抽象構文木(AST)にヒントを得た新しい特徴木ベース合成フレームワークを提案する。
コードの構文構造をキャプチャするASTとは異なり、私たちのフレームワークはコード要素間のセマンティックな関係をモデル化します。
広く使われているベースモデルを微調整してEpiCoderシリーズを作成し、関数レベルとファイルレベルの両方で最先端のパフォーマンスを実現しました。
論文 参考訳(メタデータ) (2025-01-08T18:58:15Z) - EPiC: Cost-effective Search-based Prompt Engineering of LLMs for Code Generation [8.009881267479189]
大規模言語モデル(LLM)は、特にコード生成において、様々なソフトウェア開発タスクで利用が増加している。
我々は、コードのための進化的プロンプトエンジニアリング(EPiC)という別のアプローチを提案し、高品質なコードを生成するより良いプロンプトに向けて、元のプロンプトを進化させる。
最先端(SOTA)LLMベースのコード生成モデルに対する評価は,コスト効率の観点から,EPiCがすべてのベースラインを上回っていることを示している。
論文 参考訳(メタデータ) (2024-08-20T21:15:36Z) - Case2Code: Scalable Synthetic Data for Code Generation [105.89741089673575]
大規模言語モデル(LLM)は、コード生成において顕著なブレークスルーを示している。
最近の研究は、いくつかの強力なLLMによって生成された合成データをトレーニングすることで、コードLLMを改善している。
プログラムの表現性と正確性を利用したtextbfCase2Code タスクを提案する。
論文 参考訳(メタデータ) (2024-07-17T11:35:00Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Exploring Large Language Models for Code Explanation [3.2570216147409514]
大規模言語モデル(LLM)は自然言語処理において顕著な進歩を遂げている。
本研究では,様々なLLMを用いて,コードスニペットの自然言語要約を生成するタスクについて検討する。
論文 参考訳(メタデータ) (2023-10-25T14:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。