IncomeSCM: From tabular data set to time-series simulator and causal estimation benchmark
- URL: http://arxiv.org/abs/2405.16069v3
- Date: Mon, 28 Oct 2024 15:39:28 GMT
- Title: IncomeSCM: From tabular data set to time-series simulator and causal estimation benchmark
- Authors: Fredrik D. Johansson,
- Abstract summary: We propose a strategy for turning observational data into sequential structural causal models.
We apply these ideas to the well-known Adult income data set to construct the IncomeSCM simulator.
The tasks present a suitable challenge, with effect estimates varying greatly in quality between methods.
- Score: 8.960138649105156
- License:
- Abstract: Evaluating observational estimators of causal effects demands information that is rarely available: unconfounded interventions and outcomes from the population of interest, created either by randomization or adjustment. As a result, it is customary to fall back on simulators when creating benchmark tasks. Simulators offer great control but are often too simplistic to make challenging tasks, either because they are hand-designed and lack the nuances of real-world data, or because they are fit to observational data without structural constraints. In this work, we propose a general, repeatable strategy for turning observational data into sequential structural causal models and challenging estimation tasks by following two simple principles: 1) fitting real-world data where possible, and 2) creating complexity by composing simple, hand-designed mechanisms. We implement these ideas in a highly configurable software package and apply it to the well-known Adult income data set to construct the IncomeSCM simulator. From this, we devise multiple estimation tasks and sample data sets to compare established estimators of causal effects. The tasks present a suitable challenge, with effect estimates varying greatly in quality between methods, despite similar performance in the modeling of factual outcomes, highlighting the need for dedicated causal estimators and model selection criteria.
Related papers
- Testing Generalizability in Causal Inference [3.547529079746247]
There is no formal procedure for statistically evaluating generalizability in machine learning algorithms.
We propose a systematic and quantitative framework for evaluating model generalizability in causal inference settings.
By basing simulations on real data, our method ensures more realistic evaluations, which is often missing in current work.
arXiv Detail & Related papers (2024-11-05T11:44:00Z) - Marginal Causal Flows for Validation and Inference [3.547529079746247]
Investigating the marginal causal effect of an intervention on an outcome from complex data remains challenging.
We introduce Frugal Flows, a novel likelihood-based machine learning model that uses normalising flows to flexibly learn the data-generating process.
We demonstrate the above with experiments on both simulated and real-world datasets.
arXiv Detail & Related papers (2024-11-02T16:04:57Z) - Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study [61.64685376882383]
Counterfactual learning to rank (CLTR) has attracted extensive attention in the IR community for its ability to leverage massive logged user interaction data to train ranking models.
This paper investigates the robustness of existing CLTR models in complex and diverse situations.
We find that the DLA models and IPS-DCM show better robustness under various simulation settings than IPS-PBM and PRS with offline propensity estimation.
arXiv Detail & Related papers (2024-04-04T10:54:38Z) - Task-specific experimental design for treatment effect estimation [59.879567967089145]
Large randomised trials (RCTs) are the standard for causal inference.
Recent work has proposed more sample-efficient alternatives to RCTs, but these are not adaptable to the downstream application for which the causal effect is sought.
We develop a task-specific approach to experimental design and derive sampling strategies customised to particular downstream applications.
arXiv Detail & Related papers (2023-06-08T18:10:37Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Adaptive Sampling Strategies to Construct Equitable Training Datasets [0.7036032466145111]
In domains ranging from computer vision to natural language processing, machine learning models have been shown to exhibit stark disparities.
One factor contributing to these performance gaps is a lack of representation in the data the models are trained on.
We formalize the problem of creating equitable training datasets, and propose a statistical framework for addressing this problem.
arXiv Detail & Related papers (2022-01-31T19:19:30Z) - Calibrating Over-Parametrized Simulation Models: A Framework via
Eligibility Set [3.862247454265944]
We develop a framework to develop calibration schemes that satisfy rigorous frequentist statistical guarantees.
We demonstrate our methodology on several numerical examples, including an application to calibration of a limit order book market simulator.
arXiv Detail & Related papers (2021-05-27T00:59:29Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.