Exact Spin Correlators of Integrable Quantum Circuits from Algebraic Geometry
- URL: http://arxiv.org/abs/2405.16070v1
- Date: Sat, 25 May 2024 05:42:14 GMT
- Title: Exact Spin Correlators of Integrable Quantum Circuits from Algebraic Geometry
- Authors: Arthur Hutsalyuk, Yunfeng Jiang, Balazs Pozsgay, Hefeng Xu, Yang Zhang,
- Abstract summary: We calculate the correlation functions of strings of spin operators for integrable quantum circuits exactly.
These observables can be used for calibration of quantum simulation platforms.
- Score: 2.7852431537059426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We calculate the correlation functions of strings of spin operators for integrable quantum circuits exactly. These observables can be used for calibration of quantum simulation platforms. We use algebraic Bethe Ansatz, in combination with computational algebraic geometry to obtain analytic results for medium-size (around 10-20 qubits) quantum circuits. The results are rational functions of the quantum circuit parameters. We obtain analytic results for such correlation functions both in the real space and Fourier space. In the real space, we analyze the short time and long time limit of the correlation functions. In Fourier space, we obtain analytic results in different parameter regimes, which exhibit qualitatively different behaviors. Using these analytic results, one can easily generate numerical data to arbitrary precision.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Approximating dynamical correlation functions with constant depth quantum circuits [0.0]
We show that it is possible to approximate the dynamical correlation functions up to exponential accuracy in the complex frequency domain $omega=Re(omega)+iIm(omega)$.
We prove that these algorithms generate an exponentially accurate approximation of the correlation functions on a region sufficiently far away from the real frequency axis.
arXiv Detail & Related papers (2024-06-05T12:40:38Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Complete characterization of quantum correlations by randomized
measurements [0.832184180529969]
We provide a method to measure any locally invariant property of quantum states using locally randomized measurements.
We implement these methods experimentally using pairs of entangled photons, characterizing their usefulness for quantum teleportation.
Our results can be applied to various quantum computing platforms, allowing simple analysis of correlations between arbitrary distant qubits.
arXiv Detail & Related papers (2022-12-15T15:22:28Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Correlation functions for realistic continuous quantum measurement [0.0]
We propose a self-contained and accessible derivation of an exact formula for the $n$-point correlation functions of the signal measured when continuously observing a quantum system.
arXiv Detail & Related papers (2022-11-30T23:45:22Z) - Gibbs Sampling of Continuous Potentials on a Quantum Computer [0.0]
We build a quantum algorithm for Gibbs sampling from periodic real-valued functions.
Our algorithm makes zeroeth order queries to a quantum oracle of the function.
arXiv Detail & Related papers (2022-10-14T20:56:44Z) - Variational Quantum Continuous Optimization: a Cornerstone of Quantum
Mathematical Analysis [0.0]
We show how universal quantum computers can handle mathematical analysis calculations for functions with continuous domains.
The basic building block of our approach is a variational quantum circuit where each qubit encodes up to three continuous variables.
By combining this encoding with quantum state tomography, a variational quantum circuit of $n$ qubits can optimize functions of up to $3n$ continuous variables.
arXiv Detail & Related papers (2022-10-06T18:00:04Z) - Quantum circuits for the preparation of spin eigenfunctions on quantum
computers [63.52264764099532]
Hamiltonian symmetries are an important instrument to classify relevant many-particle wavefunctions.
This work presents quantum circuits for the exact and approximate preparation of total spin eigenfunctions on quantum computers.
arXiv Detail & Related papers (2022-02-19T00:21:46Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.