DynRefer: Delving into Region-level Multi-modality Tasks via Dynamic Resolution
- URL: http://arxiv.org/abs/2405.16071v1
- Date: Sat, 25 May 2024 05:44:55 GMT
- Title: DynRefer: Delving into Region-level Multi-modality Tasks via Dynamic Resolution
- Authors: Yuzhong Zhao, Feng Liu, Yue Liu, Mingxiang Liao, Chen Gong, Qixiang Ye, Fang Wan,
- Abstract summary: Region-level multi-modality methods can translate referred image regions to human preferred language descriptions.
Unfortunately, most of existing methods using fixed visual inputs remain lacking the resolution adaptability to find out precise language descriptions.
We propose a dynamic resolution approach, referred to as DynRefer, to pursue high-accuracy region-level referring.
- Score: 54.05367433562495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Region-level multi-modality methods can translate referred image regions to human preferred language descriptions. Unfortunately, most of existing methods using fixed visual inputs remain lacking the resolution adaptability to find out precise language descriptions. In this study, we propose a dynamic resolution approach, referred to as DynRefer, to pursue high-accuracy region-level referring through mimicking the resolution adaptability of human visual cognition. DynRefer first implements stochastic vision-language alignment. It aligns desired language descriptions of multi-modality tasks with images of stochastic resolution, which are constructed by nesting a set of views around the referred region. DynRefer then implements dynamic multi-modality referring, which is realized by selecting views based on image and language priors. This allows the visual information used for referring to better match human preferences, thereby improving the representational adaptability of region-level multi-modality models. Extensive experiments show that DynRefer brings mutual improvement upon tasks including region-level captioning, open-vocabulary region recognition and attribute detection. Last but not least, DynRefer achieves new state-of-the-art on multiple region-level multi-modality tasks using a single model. Code is available at https://github.com/callsys/DynRefer.
Related papers
- FUSE-ing Language Models: Zero-Shot Adapter Discovery for Prompt Optimization Across Tokenizers [55.2480439325792]
We propose FUSE, an approach to approximating an adapter layer that maps from one model's textual embedding space to another, even across different tokenizers.
We show the efficacy of our approach via multi-objective optimization over vision-language and causal language models for image captioning and sentiment-based image captioning.
arXiv Detail & Related papers (2024-08-09T02:16:37Z) - Multi-Modal Retrieval For Large Language Model Based Speech Recognition [15.494654232953678]
We propose multi-modal retrieval with two approaches: kNN-LM and cross-attention techniques.
We show that speech-based multi-modal retrieval outperforms text based retrieval.
We achieve state-of-the-art recognition results on the Spoken-Squad question answering dataset.
arXiv Detail & Related papers (2024-06-13T22:55:22Z) - Fuse & Calibrate: A bi-directional Vision-Language Guided Framework for Referring Image Segmentation [8.383431263616105]
We introduce FCNet, a framework that employs a bi-directional guided fusion approach where both vision and language play guiding roles.
Specifically, we use a vision-guided approach to conduct initial multi-modal fusion, obtaining multi-modal features that focus on key vision information.
We then propose a language-guided calibration module to further calibrate these multi-modal features, ensuring they understand the context of the input sentence.
arXiv Detail & Related papers (2024-05-18T07:21:12Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - Towards Robust Scene Text Image Super-resolution via Explicit Location
Enhancement [59.66539728681453]
Scene text image super-resolution (STISR) aims to improve image quality while boosting downstream scene text recognition accuracy.
Most existing methods treat the foreground (character regions) and background (non-character regions) equally in the forward process.
We propose a novel method LEMMA that explicitly models character regions to produce high-level text-specific guidance for super-resolution.
arXiv Detail & Related papers (2023-07-19T05:08:47Z) - ABINet++: Autonomous, Bidirectional and Iterative Language Modeling for
Scene Text Spotting [121.11880210592497]
We argue that the limited capacity of language models comes from 1) implicit language modeling; 2) unidirectional feature representation; and 3) language model with noise input.
We propose an autonomous, bidirectional and iterative ABINet++ for scene text spotting.
arXiv Detail & Related papers (2022-11-19T03:50:33Z) - MultiRes-NetVLAD: Augmenting Place Recognition Training with
Low-Resolution Imagery [28.875236694573815]
We augment NetVLAD representation learning with low-resolution image pyramid encoding.
The resultant multi-resolution feature pyramid can be conveniently aggregated through VLAD into a single compact representation.
We show that the underlying learnt feature tensor can be combined with existing multi-scale approaches to improve their baseline performance.
arXiv Detail & Related papers (2022-02-18T11:53:01Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements.
We propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features from the entangled pretrained cross-lingual representations.
Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts.
arXiv Detail & Related papers (2020-11-23T16:00:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.