GreenCOD: A Green Camouflaged Object Detection Method
- URL: http://arxiv.org/abs/2405.16144v1
- Date: Sat, 25 May 2024 09:25:27 GMT
- Title: GreenCOD: A Green Camouflaged Object Detection Method
- Authors: Hong-Shuo Chen, Yao Zhu, Suya You, Azad M. Madni, C. -C. Jay Kuo,
- Abstract summary: We introduce GreenCOD, a green method for detecting camouflaged objects distinct in its avoidance of backpropagation techniques.
GreenCOD leverages gradient boosting and deep features extracted from pre-trained Deep Neural Networks (DNNs)
Remarkably, our models are trained without backpropagation and achieve the best performance with fewer than 20G Multiply-Accumulate Operations (MACs)
- Score: 32.80810414181875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce GreenCOD, a green method for detecting camouflaged objects, distinct in its avoidance of backpropagation techniques. GreenCOD leverages gradient boosting and deep features extracted from pre-trained Deep Neural Networks (DNNs). Traditional camouflaged object detection (COD) approaches often rely on complex deep neural network architectures, seeking performance improvements through backpropagation-based fine-tuning. However, such methods are typically computationally demanding and exhibit only marginal performance variations across different models. This raises the question of whether effective training can be achieved without backpropagation. Addressing this, our work proposes a new paradigm that utilizes gradient boosting for COD. This approach significantly simplifies the model design, resulting in a system that requires fewer parameters and operations and maintains high performance compared to state-of-the-art deep learning models. Remarkably, our models are trained without backpropagation and achieve the best performance with fewer than 20G Multiply-Accumulate Operations (MACs). This new, more efficient paradigm opens avenues for further exploration in green, backpropagation-free model training.
Related papers
- Fake it till You Make it: Reward Modeling as Discriminative Prediction [49.31309674007382]
GAN-RM is an efficient reward modeling framework that eliminates manual preference annotation and explicit quality dimension engineering.<n>Our method trains the reward model through discrimination between a small set of representative, unpaired target samples.<n>Experiments demonstrate our GAN-RM's effectiveness across multiple key applications.
arXiv Detail & Related papers (2025-06-16T17:59:40Z) - Neural Parameter Search for Slimmer Fine-Tuned Models and Better Transfer [17.463052541838504]
Fine-tuned models often struggle outside their specific domains and exhibit considerable redundancy.<n>Recent studies suggest that combining a pruned fine-tuned model with the original pre-trained model can mitigate interference when merging model parameters across tasks.<n>We introduce a novel method called Neural Pruning (NPS-Pruning) for slimming down fine-tuned models.
arXiv Detail & Related papers (2025-05-24T14:27:20Z) - Multiscale Stochastic Gradient Descent: Efficiently Training Convolutional Neural Networks [6.805997961535213]
Multiscale Gradient Descent (Multiscale-SGD) is a novel optimization approach that exploits coarse-to-fine training strategies to estimate the gradient at a fraction of the cost.
We introduce a new class of learnable, scale-independent Mesh-Free Convolutions (MFCs) that ensure consistent gradient behavior across resolutions.
Our results establish a new paradigm for the efficient training of deep networks, enabling practical scalability in high-resolution and multiscale learning tasks.
arXiv Detail & Related papers (2025-01-22T09:13:47Z) - MARS: Unleashing the Power of Variance Reduction for Training Large Models [56.47014540413659]
Large gradient algorithms like Adam, Adam, and their variants have been central to the development of this type of training.
We propose a framework that reconciles preconditioned gradient optimization methods with variance reduction via a scaled momentum technique.
arXiv Detail & Related papers (2024-11-15T18:57:39Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Massive Dimensions Reduction and Hybridization with Meta-heuristics in Deep Learning [0.24578723416255746]
Histogram-based Differential Evolution (HBDE) hybridizes gradient-based and gradient-free algorithms to optimize parameters.
HBDE outperforms baseline gradient-based and parent gradient-free DE algorithms evaluated on CIFAR-10 and CIFAR-100 datasets.
arXiv Detail & Related papers (2024-08-13T20:28:20Z) - FOSTER: Feature Boosting and Compression for Class-Incremental Learning [52.603520403933985]
Deep neural networks suffer from catastrophic forgetting when learning new categories.
We propose a novel two-stage learning paradigm FOSTER, empowering the model to learn new categories adaptively.
arXiv Detail & Related papers (2022-04-10T11:38:33Z) - Online Convolutional Re-parameterization [51.97831675242173]
We present online convolutional re- parameterization (OREPA), a two-stage pipeline, aiming to reduce the huge training overhead by squeezing the complex training-time block into a single convolution.
Compared with the state-of-the-art re-param models, OREPA is able to save the training-time memory cost by about 70% and accelerate the training speed by around 2x.
We also conduct experiments on object detection and semantic segmentation and show consistent improvements on the downstream tasks.
arXiv Detail & Related papers (2022-04-02T09:50:19Z) - Rethinking Pareto Frontier for Performance Evaluation of Deep Neural
Networks [2.167843405313757]
We re-define the efficiency measure using a multi-objective optimization.
We combine competing variables with nature simultaneously in a single relative efficiency measure.
This allows to rank deep models that run efficiently on different computing hardware, and combines inference efficiency with training efficiency objectively.
arXiv Detail & Related papers (2022-02-18T15:58:17Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
We introduce Powerpropagation, a new weight- parameterisation for neural networks that leads to inherently sparse models.
Models trained in this manner exhibit similar performance, but have a distribution with markedly higher density at zero, allowing more parameters to be pruned safely.
Here, we combine Powerpropagation with a traditional weight-pruning technique as well as recent state-of-the-art sparse-to-sparse algorithms, showing superior performance on the ImageNet benchmark.
arXiv Detail & Related papers (2021-10-01T10:03:57Z) - Proxy Convexity: A Unified Framework for the Analysis of Neural Networks
Trained by Gradient Descent [95.94432031144716]
We propose a unified non- optimization framework for the analysis of a learning network.
We show that existing guarantees can be trained unified through gradient descent.
arXiv Detail & Related papers (2021-06-25T17:45:00Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Novelty Detection via Non-Adversarial Generative Network [47.375591404354765]
A novel decoder-encoder framework is proposed for novelty detection task.
Under the non-adversarial framework, both latent space and image reconstruction space are jointly optimized.
Our model has the clear superiority over cutting-edge novelty detectors and achieves the state-of-the-art results on the datasets.
arXiv Detail & Related papers (2020-02-03T01:05:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.